Skip Nav Destination
Close Modal
Search Results for
ferritic stainless steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 496 Search Results for
ferritic stainless steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820077
EISBN: 978-1-62708-339-3
... Abstract Ferritic stainless steels are essentially iron-chromium alloys with body-centered cubic crystal structures. Chromium content is usually in the range of 11 to 30%. The primary advantage of the ferritic stainless steels, and in particular the high-chromium, high-molybdenum grades...
Abstract
Ferritic stainless steels are essentially iron-chromium alloys with body-centered cubic crystal structures. Chromium content is usually in the range of 11 to 30%. The primary advantage of the ferritic stainless steels, and in particular the high-chromium, high-molybdenum grades, is their excellent stress-corrosion cracking resistance and good resistance to pitting and crevice corrosion in chloride environments. This chapter provides information on the classifications, properties, and general welding considerations of ferritic stainless steels. The emphasis is placed on intergranular corrosion, which is the most common cause of failure in ferritic stainless steel weldments. Two case histories involving intergranular corrosion failures of ferritic stainless steel weldments are included. A brief discussion on hydrogen embrittlement is also provided.
Image
Published: 01 December 2006
Fig. 3 Grain boundary martensite formation in a type 430 ferritic stainless steel gas-tungsten arc weld. (a) Fusion zone. 100×. (b) Heat-affected zone. 150×. Source: Ref 13 , 14
More
Image
Published: 01 December 2015
Fig. 39 Intergranular corrosion of a contaminated E-Brite ferritic stainless steel weld. Electrolytically etched with 10% oxalic acid. 200×
More
Image
Published: 01 October 2011
Image
Published: 01 January 2015
Fig. 23.18 Microstructure of annealed ferritic stainless steel (E-Brite 26-1 containing 26% Cr and 1% Mo). Etched electrolytically in 60% HNO 3 −H 2 O. Light micrograph. Courtesy of G. Vander Voort, Carpenter Technology Corp., Reading, PA
More
Image
Published: 01 January 2015
Fig. 23.20 Microstructures of ferritic stainless steel containing 24.5% Cr, 3.54% Mo, 3.90% Ni, 0.17% Nb, and 0.32% Al annealed at 850 °C (1560 °F). (a) Annealed 100 min. Arrow points to chi phase. (b) Annealed 300 min. Dominant second phase (etched gray) is sigma. Light micrographs. Source
More
Image
in Introduction to Steels and Cast Irons
> Metallographer’s Guide<subtitle>Practices and Procedures for Irons and Steels</subtitle>
Published: 01 March 2002
Fig. 1.13 Micrograph of AISI 430F free-machining ferritic stainless steel showing a microstructure consisting of ferrite and globular manganese sulfides (gray constituent). Etched in three parts glycerol, two parts HCl, and one part HNO 3 . 750×
More
Image
in Metallurgy of Steels and Related Boiler Tube Materials
> Failure Investigation of Boiler Tubes: A Comprehensive Approach
Published: 01 December 2018
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310109
EISBN: 978-1-62708-286-0
... Abstract This chapter discusses the alloy composition, metallurgy, mechanical behavior, stabilization, texture, anisotropy, high-temperature properties, and corrosion and oxidation resistance of ferritic stainless steels. ferritic stainless steels alloy composition mechanical behavior...
Image
Published: 01 December 2006
Image
Published: 01 December 2001
Image
in Introduction to Steels and Cast Irons
> Metallographer’s Guide<subtitle>Practices and Procedures for Irons and Steels</subtitle>
Published: 01 March 2002
Image
in Mechanical Properties
> Powder Metallurgy Stainless Steels<subtitle>Processing, Microstructures, and Properties</subtitle>
Published: 01 June 2007
Fig. 7.7 Impact strength of three ferritic stainless steels as a function of sintering temperature and sintered density. Sintering atmosphere was hydrogen, and sintering time was 30 min. Source: Ref 16 . Reprinted with permission from MPIF, Metal Powder Industries Federation, Princeton, NJ
More
Image
Published: 01 June 2010
Fig. 40 Microstructure of two ferritic stainless steels. (a) Type 409 (UNS number S40900) muffler-grade strip in annealed condition. (b) Type 430 (UNS number S43000) annealed strip
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930249
EISBN: 978-1-62708-359-1
.... This is followed by discussions of weldability, cracking, and the engineering properties of stainless steel welds, namely martensitic stainless steels, ferritic stainless steel welds, austenitic stainless steels, and duplex stainless steels. austenitic stainless steel cracking DeLong diagram duplex...
Abstract
Stainless steel base metals and the welding filler metals used with them are chosen on the basis of suitable corrosion resistance for the intended application. This article describes several constitution diagrams that that have been developed to predict microstructures and properties. This is followed by discussions of weldability, cracking, and the engineering properties of stainless steel welds, namely martensitic stainless steels, ferritic stainless steel welds, austenitic stainless steels, and duplex stainless steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140133
EISBN: 978-1-62708-264-8
... Abstract Stainless steels derive their name from their corrosion-resisting properties first observed in 1912. Two groups, working independently, concurrently discovered what came to be known as austenitic and ferritic stainless steels. Martensitic and precipitation-hardened stainless steels...
Abstract
Stainless steels derive their name from their corrosion-resisting properties first observed in 1912. Two groups, working independently, concurrently discovered what came to be known as austenitic and ferritic stainless steels. Martensitic and precipitation-hardened stainless steels would be developed later. This chapter discusses each of these four major types of stainless steel and their respective compositions, properties, and uses. It explains how alloying, heat treating, and various hardening processes affect corrosion performance, and includes a detailed discussion on the optimization of martensitic stainless steels for cutlery applications.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030062
EISBN: 978-1-62708-282-2
... of corrosion behavior between cast and wrought product forms. austenitic stainless steels ferritic stainless steels high-performance stainless steels duplex stainless steels corrosion corrosion testing corrosion prevention METALLURGICAL VARIABLES can influence the corrosion behavior...
Abstract
This chapter is dedicated mostly to the metallurgical effects on the corrosion behavior of corrosion-resistant alloys. It begins with a section describing the importance of alloying elements on the corrosion behavior of nickel alloys. The chapter considers the metallurgical effects of alloy composition for heat-resistant alloys, nickel corrosion-resistant alloys, and nickel-base alloys. This chapter also discusses the corrosion implications of changing the alloy microstructure via solid-state transformation, second-phase precipitation, or cold work. It concludes with a comparison of corrosion behavior between cast and wrought product forms.
Image
Published: 01 December 2008
Fig. 4 Forming limit diagrams for categories of stainless steels. A, austenitic stainless steel; F, ferritic stainless steel; HAS, high-strength austenitic stainless steel; HSF, high-strength ferritic stainless steel; FA(50), ferritic-austenitic stainless steel. Source: Ref 3
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410579
EISBN: 978-1-62708-265-5
... to produce high-quality austenitic, ferritic, and duplex stainless steels. alloy design alloying corrosion resistance microstructure phase equilibria stainless steel thermomechanical processing STAINLESS STEELS are a large group of special alloys developed primarily to withstand corrosion...
Abstract
Stainless steels derive their name from their exceptional corrosion resistance, which is attributed to their finely tuned compositions. This chapter discusses the alloying elements used in stainless steels and the some of the processing challenges they present. One of the biggest challenges is that stainless steels cannot be hardened by heat treatment. As a result, they are highly sensitive to processing-induced defects and the formation of detrimental phases. The chapter explains how alloy design, phase equilibria, microstructure, and thermomechanical processing can be concurrently optimized to produce high-quality austenitic, ferritic, and duplex stainless steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240433
EISBN: 978-1-62708-251-8
... Abstract This chapter discusses the classification, composition, properties, and applications of five types of stainless steels: austenitic, ferritic, duplex, martensitic, and precipitation-hardening steels. It discusses the process involved in argon oxygen decarburization that is used...
Abstract
This chapter discusses the classification, composition, properties, and applications of five types of stainless steels: austenitic, ferritic, duplex, martensitic, and precipitation-hardening steels. It discusses the process involved in argon oxygen decarburization that is used to refine stainless steel. The chapter also provides information on the classification and composition of stainless steel castings. It concludes with a brief description of the Schaeffler constitution diagram which is useful in predicting the type of stainless steel as a function of its alloy content.
1