1-20 of 1515 Search Results for

ferrite

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410039
EISBN: 978-1-62708-265-5
... The microstructure of carbon steel is largely determined by the transformation of austenite to ferrite, cementite, and pearlite. This chapter focuses on the microstructures produced by diffusion-controlled transformations that occur at relatively low cooling rates. It describes the conditions...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410277
EISBN: 978-1-62708-265-5
... This chapter describes heat treatments that produce uniform grain structures, reduce residual stresses, and improve ductility and machinability. It also discusses spheroidizing treatments that improve strength and toughness by promoting dispersions of spherical carbides in a ferrite matrix...
Image
Published: 01 August 2018
Fig. 9.67 Widmanstätten ferrite in a medium carbon steel. The ferrite plates in this case are disposed at an angle of 60° in the prior austenitic grain. Etchant: aqua regia. More
Image
Published: 01 August 2018
Fig. 17.34 Gray cast iron with ferrite dendrites. Ferrite is formed due to graphitization during cooling in the solid state. Distribution D graphite. Etchant: picral. More
Image
Published: 01 January 2015
Fig. 7.14 Schematic diagram of intragranular acicular ferrite (IAF) and other ferrite morphologies in weld metal. Source: Ref 7.28 More
Image
Published: 01 March 2002
Fig. 8.18 A dual-phase steel showing epitaxial ferrite (new ferrite) at prior austenite grain boundaries. The epitaxial ferrite formed when the steel was heated into the two-phase region. Austenite formed at the grain boundaries, and ferrite transformed epitaxially on the old ferrite upon More
Image
Published: 01 March 2002
Fig. 8.36 Epitaxial ferrite in a dual-phase steel. The epitaxial ferrite is surrounding regions of martensite (dark-appearing constituent) (see arrows). Matrix is ferrite. Sodium metabisulfite tint etch. 1000× More
Image
Published: 01 August 1999
Fig. 5.16 (Part 3) Ferrite-pearlite banding. (i) Pancake arrangement of ferrite and pearlite bands in banded plate. (j) Variation of manganese and silicon contents across representative ferrite-pearlite bands in the specimen shown in Fig. 5.16 (Part 2) (e) . Determined by EPMA. More
Image
Published: 01 March 2002
Fig. 2.14 A form of ferrite called Widmanstätten ferrite in a coarse-grained AISI/SAE 1025 steel. 4% picral etch. 100× More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410113
EISBN: 978-1-62708-265-5
... This chapter describes the ferritic microstructures that form in carbon steels under continuous cooling conditions. It begins with a review of the Dubé classification system for crystal morphologies. It then explains how cooling-rate-induced changes involving carbon atom diffusion...
Image
Published: 01 November 2019
Figure 24 X-ray CT analysis shows a crack in the ferrite core. More
Image
Published: 01 September 2008
Fig. 33 Undissolved ferrite and martensite in improperly specified and improperly induction-hardened medium-carbon steel part. Each small scale division is 5 μm. More
Image
Published: 01 September 2008
Fig. 3 Crystal structures. (a) Austenite, face-centered cubic. (b) Ferrite, body-centered cubic. (c) Martensite, body-centered tetragonal. Source: Ref 1 More
Image
Published: 01 September 2008
Fig. 44 View of the induction-hardened pin tip location. Ferrite bands and inclusions can be observed. Etched with 3% nital. (a) Original magnification: 100×. (b) Original magnification: 200× More
Image
Published: 01 October 2011
Fig. 2.26 Micrographs of ferrite grains in low-carbon sheet steel. From top to bottom, average grain size is coarse (ASTM No. 5), medium (ASTM No. 7), and fine (ASTM No. 9). All specimens polished and then etched with Nital. Image magnification is 100×. Arrows indicate the rolling direction. More
Image
Published: 01 October 2011
Fig. 9.2 Crystal structure and lattice spacing of (a) ferrite (body-centered cubic) and (b) austenite (face-centered cubic) of iron More
Image
Published: 01 October 2011
Fig. 9.3 Structure of (a) ferrite (body-centered cubic) and (b) martensite (body-centered tetragonal) More
Image
Published: 01 October 2011
Fig. 9.6 Microstructure of typical ferrite-pearlite structural steels at two different carbon contents. (a) 0.10% C. (b) 0.25% C. 2% nital + 4% picral etch. Original magnification 200×. Source: Ref 9.1 More
Image
Published: 01 October 2011
Fig. 9.9 Different appearance of ferrite and cementite (Fe 3 C) constituents of pearlite when examined by optical (light) microscope and scanning electron microscope (SEM). A polished specimen is chemically etched such that the Fe 3 C platelets stand out in relief. (a) In optical microscopy More
Image
Published: 01 October 2011
Fig. 10.6 As-cast gray iron with a pearlitic-ferritic matrix. P, pearlite; F, ferrite. (a) Original magnification: 100×. (b) Original magnification: 500×. A ternary phosphorous eutectic (E) known as steadite is a common constituent of gray iron microstructures. Source: Ref 10.5 More