Skip Nav Destination
Close Modal
Search Results for
feedstock density
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 57 Search Results for
feedstock density
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290085
EISBN: 978-1-62708-319-5
... density, elastic modulus, rheological behavior, particle size, formulation control, feedstock mixing, and feedstock properties. The chapter also provides information on the processes involved in feedstock preparation and testing. elastic modulus feedstock density feedstock mixing mixture...
Abstract
This chapter is a detailed account of various attributes related to mixing and testing of powder-binder feedstocks. Mixing parameters and their effects on feedstock properties is discussed. The attributes reviewed include mixture homogeneity, wetting, powder-binder ratio, feedstock density, elastic modulus, rheological behavior, particle size, formulation control, feedstock mixing, and feedstock properties. The chapter also provides information on the processes involved in feedstock preparation and testing.
Image
Published: 30 April 2020
Fig. 5.10 Conceptual outline of how water immersion is used to measure feedstock density. A sequence of dry and wet mass determinations is used to measure the sample volume, and the sample mass divided by that volume gives the feedstock density.
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290111
EISBN: 978-1-62708-319-5
...-saturated pores. The binder content is low and the solids content high, so little change occurs in feedstock density during forming, even with high pressures. Extrusion is used to form discrete objects by chopping the product to the desired length. Applications for extrusion are found in the fabrication...
Abstract
The conversion of feedstock into a shape involves the application of heat and pressure, and possibly solvents. This chapter discusses the operating principle, advantages, limitations, and applications of such shaping processes, namely additive manufacturing, cold isostatic pressing, die compaction, extrusion, injection molding, slip casting, slurry processes, and tape casting. Information on equipment setup, requirements, and the various factors influencing these processes are described. In addition, the chapter provides information on novel approaches and processing costs applicable to these shaping processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290261
EISBN: 978-1-62708-319-5
... and Si3N4) and for brittle materials that require full density (WC-Co, for example). pressure control. The nal phase of molding, where the gate is not frozen and the quantity of feedstock in the die cavity is controlled by the pressure, thereby ensuring uniform weight and dimensions in the nal component...
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.9781627083195
EISBN: 978-1-62708-319-5
Image
Published: 01 June 2016
Fig. 5.17 (a) Scanning electron micrograph of the copper feedstock powder. (b) Transmission electron micrograph from powders showing a high dislocation density of 10 12 /cm 2 . (c) Transmission electron micrograph of the cold-sprayed coating, showing the triple point of three particles
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000039
EISBN: 978-1-62708-312-6
... thermoplastic polymer, and palletized to form the feedstock. The latter is available from major chemical companies. The metal powder must be of small particle size to accomplish sintering to nearly full density. High packing densities are also desirable, to minimize the amount of binder necessary to fill all...
Abstract
This chapter discusses the methods by which stainless steel powders are shaped and compacted prior to sintering, including rigid die compaction, metal injection molding, extrusion, and hot isostatic pressing. It explains where each process is used and how processing parameters, such as temperature and pressure, and powder characteristics, such as particle size and shape, influence the quality of manufactured parts. It describes the various stages of metal powder compaction, the role of lubricants, and how to account for dimensional changes in the design of tooling and process sequences.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.tb.hpcspa.t54460173
EISBN: 978-1-62708-285-3
... resulted in both improved deposition efficiency and higher coating density ( Ref 6.1 ). Particle size distribution affects the cold spray process the most. On one hand, a high content of very fine powders below 5 to 10 μm decreases the deposition efficiency (DE), increases the coating porosity...
Abstract
Increasing growth of high-pressure cold spraying applications on the industrial scale have forced global powder producers to face this challenge and develop specific powders for cold spray applications. This chapter provides information on the properties, classification, characteristics, manufacturing, and procedures for packaging of powders specific to cold spray applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290201
EISBN: 978-1-62708-319-5
... are gas or water atomized. Oxygen is higher when the molten metal is atomized by using high-pressure water. The less spherical water-atomized powder starts at a lower packing density. The difference in particle shape reduces solids loading in the feedstock from 62.5 vol% for gas-atomized powder to 55 vol...
Abstract
This chapter provides details on powder-binder processing for three materials, namely precipitation-hardened 17-4 PH stainless steel, cemented carbides, and alumina. The types of powders, binders, feedstock, shaping processes, debinding, sintering cycles, compositions, microstructure, distortion, postsintering treatments, and mechanical properties are presented for each. The shaping options include powder-binder approaches such as binder jetting, injection molding, extrusion, slip and slurry casting, centrifugal casting, tape casting, and additive manufacturing. Sintering options are outlined with respect to attaining high final properties.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290251
EISBN: 978-1-62708-319-5
... is rotated slowly with external heating. Over time, the pellets partially melt, stick to the walls, and form a large, hollow structure on cooling. Similar ideas are applied to powder-binder mixtures, where slow rotation is required. The higher density of powder-binder feedstock requires slow rotation...
Abstract
This chapter is intended to identify materials, processes, and designs that will lead to great advances in powder-binder forming technologies. It discusses some of the structures obtained through these advances in powder-binder technologies such as binder jetting and extrusion-based additive manufacturing, including bound-metal deposition and fused-filament fabrication: oxidation-resistant high-temperature alloys, anisotropic structures, submicrometer-scale structures, surface hard materials, and artist metallic clays. Some of the advances discussed include the developments in process involving plastics, emulsions, ceramics, and porous structures and foams. Improvements in the design processes have led to the development of functional structures, controlled porosity, and bioinspired structures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290035
EISBN: 978-1-62708-319-5
... to formulate a binder. 3.1 Introduction This chapter covers binder ingredients. Combinations of binder ingredients are mixed with powder to form feedstock customized for use in various shaping processes. This is the situation for slurry and hard tooling approaches, including injection molding, extrusion...
Abstract
Generally, binders consist of at least three ingredients: a backbone to provide strength (compounds such as polyethylene, polypropylene, ethylene vinyl acetate, and polystyrene); a filler, such as polyacetal and paraffin wax, to occupy space between particles; and additives, such as stearates, stearic acid, or magnesium stearate, as well as phosphates and sulfonates, to adjust viscosity, lubricate tooling, disperse particles, or induce binder wetting of the powder. In the case of binders deposited via ink jet printing, the binder contains solvents to lower the viscosity for easier jetting. The chapter provides a detailed description of these constituents. The requirements of a binder as well as the factors determining the physical and thermal properties of polymers are discussed. Then, two factors associated with solvation of polymers, namely solubility parameter and wetting, are covered. The chapter ends with information on the specification of polymers used in binders.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290001
EISBN: 978-1-62708-319-5
... of feedstock and describing the challenges in component production. The chapter also summarizes alphabetically a few key concepts in powder-binder processing. binders feedstock polymers powder-binder fabrication The idea of working powders into a target shape followed by sintering emerged more...
Abstract
This chapter provides an introduction to powder processing of binders and polymers. It sets the context for the remainder of the book by providing an overview of the topics discussed in the subsequent chapters and by providing introduction to powder-binder fabrication and customization of feedstock and describing the challenges in component production. The chapter also summarizes alphabetically a few key concepts in powder-binder processing.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.tb.hpcspa.t54460185
EISBN: 978-1-62708-285-3
... fractions (19.5, 36.8, and 57.6 vol%) were mechanically blended and used as initial powder feedstock for coating deposition. The deposits had 30 to 40% lower QC phase than the starting powder, and it was observed that the density and hardness of deposits increased with increasing volume fraction of the QC...
Abstract
Cold spray coatings technology has the potential to provide surface enhancement for applications in sectors such as defense and aerospace, oil and gas, power generation, medical, automotive, electronics, and railways. The ability to deposit clean metallic coatings is used in applications requiring corrosion/oxidation protection, erosion/wear protection, additive manufacturing, and fabricating free forms. This chapter discusses the function, advantages, and benefits of some of these applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290067
EISBN: 978-1-62708-319-5
... Abstract This chapter provides details on several specific binder formulations and a discussion of basic binder design concepts. The focus is on customization of the feedstock response to heating, pressurization, or solvent exposure for a specific shaping process. The discussion starts...
Abstract
This chapter provides details on several specific binder formulations and a discussion of basic binder design concepts. The focus is on customization of the feedstock response to heating, pressurization, or solvent exposure for a specific shaping process. The discussion starts with the requirements of a binder system, the historical progression of binder formulations, and the use of binder alternatives to adapt to specific applications. The importance of binder handling strength to shape preservation is emphasized. The chapter provides information on the binders used for room-temperature shaping, namely slurry and tape casting systems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120047
EISBN: 978-1-62708-269-3
... are the sources of feedstock in powder making. One of the other important features of P/M processing is the potential for developing unique, nonstandard chemistries that may not be able to be processed by any other techniques. Rapid solidification processing has been investigated for nearly two decades...
Abstract
This chapter discusses the advantages and disadvantages of producing titanium parts using powder metallurgy (PM) techniques. It compares the typical properties of wrought, cast, and PM titanium alloy products, addresses various manufacturing challenges, and describes several consolidation and shaping processes along with associated property data.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.t56040020
EISBN: 978-1-62708-428-4
... is suitable for the deposition of oxygen- and temperature-sensitive materials and can produce thick coatings exhibiting wrought-like microstructures with near theoretical density. Cold spray is being used in the military and in aerospace and energy industry applications. The main research priorities...
Abstract
This article summarizes the results of work completed by the ASM Thermal Spray Society Advisory Committee to identify key research challenges and opportunities in the thermal spray field. It describes and prioritizes research priorities related to emerging process methods, thermal spray markets and applications, and process robustness, reliability, and economics.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.tb.hpcspa.t54460017
EISBN: 978-1-62708-285-3
... line, a fluidized powder feedstock is fed into the gas stream. The powder is accelerated by the expanding gas and impacts the substrate at high velocities of up to 1200 m/s (4000 ft/s) ( Ref 2.7 , 2.23 – 2.26 ). The gas velocities are determined by the gas type, the gas temperature, and the expansion...
Abstract
This chapter reviews the current understanding of high-pressure cold spraying for different materials, covering widely accepted general mechanisms for particle deposition and the processes and parameters involved. It begins by reviewing the mechanisms of bonding. An overview of the optimization of the critical process parameters for improving coating qualities is then provided. This is followed by a separate section dealing with bonding between different materials and addressing influences on adhesion to the substrate as well as the cohesion between dissimilar coating constituents. The knowledge of the basic science and mechanisms finally allows for discussion on the requirements for suitable cold spray equipment and of the parameter sets needed for successful coating deposition.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.tb.hpcspa.t54460209
EISBN: 978-1-62708-285-3
... up to bulk scale with advanced mechanical properties (e.g., high density, high strength, high hardness) and without oxidation, phase transformation, or decomposition of feedstock materials, there have been a number of studies on the application of the cold spray process to various industrial fields...
Abstract
This chapter discusses the application of high-pressure cold spray to the automotive industry field, with special attention to three applications: additive manufacturing, fabrication methods, and protective coatings. Various studies on the automotive application of cold spray are reviewed. The background and purpose of each application are presented and practical cases are discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000223
EISBN: 978-1-62708-312-6
... operating sintering furnace. required for initiating a chemical reaction or physical process such as diffusion or plastic aperture size. The opening of a mesh, as in a flow. sieve. activator. The additive used in activated sinter- apparent density. The weight of a unit volume ing, also called a dopant...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.tb.hpcspa.t54460121
EISBN: 978-1-62708-285-3
... powders enables an understanding of the starting powder structure. Borchers et al. ( Ref 5.44 ) reported a TEM study of cold-sprayed copper (using nitrogen gas) to assess the bonding mechanism of these coatings. An analysis of the feedstock powder revealed that the particles had a dislocation density...
Abstract
This chapter elucidates the indispensable role of characterization in the development of cold-sprayed coatings and illustrates some of the common processes used during coatings development. Emphasis is placed on the advanced microstructural characterization techniques that are used in high-pressure cold spray coating characterization, including residual-stress characterization. The chapter includes some preliminary screening of tool hardness and bond adhesion strength, as well as a distinction between surface and bulk characterization techniques and their importance for cold spray coatings. The techniques covered are optical microscopy, X-Ray diffraction, scanning electron microscopy, focused ion beam machining, electron probe microanalysis, transmission electron microscopy, and electron backscattered diffraction. The techniques also include electron channeling contrast imaging, X-Ray photoelectron spectroscopy, X-ray fluorescence, Auger electron spectroscopy, Raman spectroscopy, oxygen analysis, and nanoindentation.