Skip Nav Destination
Close Modal
Search Results for
fatigue modeling
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 364 Search Results for
fatigue modeling
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Sources of Failures in Carburized and Carbonitrided Components
> Failure Analysis of Heat Treated Steel Components
Published: 01 September 2008
Fig. 70 Model of fatigue crack initiation due to the presence of inclusions in a nonmartensitic (decarburized) steel layer. Source: Ref 122
More
Image
Published: 01 December 2003
Fig. 12 Fatigue behavior of polymethyl methacrylate at 1 Hz for the Paris model. Temperature range is 123 to 323 K. da / dN , fatigue crack growth propagation; Δ K , stress-intensity factor range. Source: Ref 53
More
Image
Published: 01 March 2006
Fig. 3.7 Morrow’s notation for use in the Manson-Coffin-Basquin model for fatigue in strain cycling
More
Image
Published: 01 March 2006
Image
Published: 01 March 2006
Fig. 3.32 Model for extrapolating high-cycle fatigue beyond 10 6 cycles by using elastic line segments of progressively reduced slope. (a) Slope steeper than –0.12. (b) Slope shallower than –0.12.
More
Image
Published: 01 March 2006
Fig. 4.34 Comprehensive model for mean stress representation of fatigue results for 300M steel. Q = 4.83; P = –0.139
More
Image
Published: 01 July 1997
Fig. 24 Predicted fatigue strength of a cruciform weld model ( Fig. 16 ) for mild steel ( S y = 36 ksi, 250 MPa) and quenched-and-tempered (QT) steel ( S y = 100 ksi, 690 MPa). R = 0; T given in inches. Quenched-and-tempered steels show no advantage for all nominal types in as-welded
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060173
EISBN: 978-1-62708-343-0
..., and thermomechanical fatigue) damage model, and numerous methods that make use of creep-rupture, crack-growth, and void-growth data. It also discusses the use of continuum damage mechanics and includes examples demonstrating the accuracy of each method as well as the procedures involved. crack growth creep...
Abstract
This chapter provides a detailed review of creep-fatigue analysis techniques, including the 10% rule, strain-range partitioning, several variants of the frequency-modified life equation, damage assessment based on tensile hysteresis energy, the OCTF (oxidation, creep, and thermomechanical fatigue) damage model, and numerous methods that make use of creep-rupture, crack-growth, and void-growth data. It also discusses the use of continuum damage mechanics and includes examples demonstrating the accuracy of each method as well as the procedures involved.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870325
EISBN: 978-1-62708-344-7
... and ceramic fiber-reinforced metal-matrix composites. bone cyclic loading ceramics fatigue crack growth fatigue modeling fatigue properties fatigue test polymers Introduction In this chapter we consider several classes of materials that are of special interest: polymers, bone, ceramics...
Abstract
This chapter discusses the effect of fatigue on polymers, ceramics, composites, and bone. It begins with a general comparison of polymers and metals, noting important differences in microstructure and cyclic loading response. It then presents the results of several studies that shed light on the fatigue behavior and crack growth mechanisms of common structural polymers and moves on from there to discuss the fatigue behavior of bone and how it compares to stable and cyclically softening metals. It also discusses the fatigue characteristics of engineered and composited ceramics and ceramic fiber-reinforced metal-matrix composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780249
EISBN: 978-1-62708-281-5
... of Δ K has led to the development of the other fatigue models. This equation suggests that the rate of FCP is a logarithmically linear function of Δ K . In fact, typical FCP behavior, as illustrated in Fig. 8 , falls into three distinct regions. Region I starts with a threshold value of the stress...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870075
EISBN: 978-1-62708-344-7
.... The SWT procedure evolved from fatigue results in the intermediate-to high-cycle fatigue regime, whereas the Goodman and Gerber approaches, and subsequently, the Morrow approach, were derived from very high-cycle fatigue data. Unfortunately, the otherwise useful SWT model is ill-suited for large...
Abstract
This chapter discusses the concept of mean stress and explains how it is used in fatigue analysis and design. It begins by examining the stress-strain response of test samples subjected to cyclic forces and strains, noting important features and what they reveal about materials and their fatigue behaviors. It then discusses the challenge of developing hysteresis loops for complex loading patterns and accounting for effects such as ratcheting and stress relaxation. The sections that follow provide a summary of the various ways mean stress is described in the literature and the methods used to calculate or predict its effect on the fatigue life of machine components. The discussion also sheds light on why tensile mean stress is detrimental to both fatigue life and ductility, while compressive mean stress is highly beneficial.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540379
EISBN: 978-1-62708-309-6
... Abstract This appendix presents an analytical model that estimates damage rates for both crack initiation and propagation mechanisms. The model provides a nonarbitrary definition of fatigue crack initiation length, which serves as an analytical link between initiation and propagation analyses...
Abstract
This appendix presents an analytical model that estimates damage rates for both crack initiation and propagation mechanisms. The model provides a nonarbitrary definition of fatigue crack initiation length, which serves as an analytical link between initiation and propagation analyses and appears to have considerable merit in estimating the total fatigue life of notched and cracked structures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930141
EISBN: 978-1-62708-359-1
... weldment using extensive experimental data and a computer model that simulates the fatigue resistance of weldments. Next, the process of fatigue in weldments is discussed in general terms, and the service conditions that favor long crack growth and the conditions that favor crack nucleation are contrasted...
Abstract
This article is intended to help engineers understand why the fatigue behavior of weldments can be such a confusing and seemingly contradictory topic and hopefully to clarify this complex subject. It first reexamines the factors influencing the fatigue behavior of an individual weldment using extensive experimental data and a computer model that simulates the fatigue resistance of weldments. Next, the process of fatigue in weldments is discussed in general terms, and the service conditions that favor long crack growth and the conditions that favor crack nucleation are contrasted. The article then presents experimental data that show the effect of weldment geometry on fatigue resistance. Several useful geometry classification systems are compared. Finally, a computer model is employed to investigate the behavior of two hypothetical weldments: a discontinuity-containing ("Nominal") weldment and a discontinuity-free ("Ideal") weldment.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870045
EISBN: 978-1-62708-344-7
... discusses high-cycle, low-cycle, and ultra-high cycle fatigue and presents several models that are useful for fatigue life predictions. fatigue design fatigue life analysis high-cycle fatigue S-N curve Introduction Traditional <italic>S-N</italic> Curve In attempting to introduce some...
Abstract
This chapter familiarizes readers with the methods used to quantify the effects of fatigue on component lifetime and failure. It discusses the development and use of S-N (stress amplitude vs. cycles to failure) curves, the emergence of strain-based approaches to fatigue analysis, and important refinements and modifications. It demonstrates the use of approximate equations, including the method of universal slopes and the four-point correlation technique, which provides reasonable estimates of elastic and plastic lines from information obtained in standard tensile tests. It also discusses high-cycle, low-cycle, and ultra-high cycle fatigue and presents several models that are useful for fatigue life predictions.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060111
EISBN: 978-1-62708-343-0
... and inelastic strain into a total strain range. The discussion covers important features, procedures, and correlations as well as the use of models and the steps involved in predicting thermomechanical fatigue (TMF) life. It also includes information on isothermal fatigue, bithermal creep-fatigue testing...
Abstract
This chapter explains why it is sometimes necessary to separate inelastic from elastic strains and how to do it using one of two methods. It first discusses the direct calculation of strain-range components from experimental data associated with large strains. It then explains how the method can be extended to the treatment of very low inelastic strains by adjusting tensile and compressive hold periods and continuous cycling frequencies. The chapter then begins the presentation of the second approach, called the total strain-range method, so named because it combines elastic and inelastic strain into a total strain range. The discussion covers important features, procedures, and correlations as well as the use of models and the steps involved in predicting thermomechanical fatigue (TMF) life. It also includes information on isothermal fatigue, bithermal creep-fatigue testing, and the predictability of the method for TMF cycling.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.9781627083447
EISBN: 978-1-62708-344-7
Image
Published: 01 October 2011
Fig. 7.25 Fatigue crack growth per fatigue cycle ( da / dN ) versus stress intensity variation ( Δ K ) per cycle. The C and n are constants that can be obtained from the intercept and slope, respectively, of the linear log da / dN versus log Δ K plot. This equation for fatigue crack
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040295
EISBN: 978-1-62708-300-3
... Abstract This chapter addresses the issue of die failures in hot and cold forging operations. It describes failure classifications, fatigue fracture and wear mechanisms, analytical wear models, and the various factors that limit die life. It also includes several case studies in which finite...
Abstract
This chapter addresses the issue of die failures in hot and cold forging operations. It describes failure classifications, fatigue fracture and wear mechanisms, analytical wear models, and the various factors that limit die life. It also includes several case studies in which finite-element modeling is used to predict die failure and extend die life.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870123
EISBN: 978-1-62708-344-7
.... It then proceeds to demonstrate the methods commonly used to analyze cumulative fatigue damage and its effect on component life starting with the classical linear damage rule. After pointing out the inherent limitations of the model, it presents a method that incorporates two linear damage rules, one applying...
Abstract
This chapter addresses the cumulative effects of fatigue and how to determine its impact on component lifetime and performance. It begins by defining a loading history and its corresponding hysteresis loops that exposes the deficiencies of some of the theories discussed. It then proceeds to demonstrate the methods commonly used to analyze cumulative fatigue damage and its effect on component life starting with the classical linear damage rule. After pointing out the inherent limitations of the model, it presents a method that incorporates two linear damage rules, one applying prior to crack initiation and the other after the crack has started. Although the method accounts somewhat better for loading-order effects, the transition in behavior that the rules presume to model occurs prior to any signs of cracking. Two modified versions of the double linear damage rule method, neither of which are related to a physical crack initiation event, are subsequently presented along with several applications showing how the different methods compare. The examples provided include two-level and multilevel tests, a gas-turbine engine compressor disk, and the cumulative damage associated with the irreversible hardening of type 304 stainless steel.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030117
EISBN: 978-1-62708-282-2
..., such as ultrahigh-strength steel in distilled water ( Fig. 25 ), are characterized by high growth rates that depend on ΔK to a reduced power. Time-dependent corrosion fatigue crack growth occurs mainly above the threshold stress intensity for static load cracking and is modeled through linear superposition of SCC...
1