Skip Nav Destination
Close Modal
Search Results for
fatigue mechanism
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 718 Search Results for
fatigue mechanism
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870237
EISBN: 978-1-62708-344-7
... Abstract This chapter focuses on the processes and mechanisms involved in fatigue. It begins with a review of some of the early theories of fatigue and the tools subsequently used to obtain a better understanding of the fatigue process. It then explains how plasticity plays a major role...
Abstract
This chapter focuses on the processes and mechanisms involved in fatigue. It begins with a review of some of the early theories of fatigue and the tools subsequently used to obtain a better understanding of the fatigue process. It then explains how plasticity plays a major role in creating dislocations, breaking up grains into subgrains, and causing microscopic imperfections to coalesce into larger flaws. It also discusses the factors that contribute to the development and propagation of fatigue cracks, including surface deterioration, volumetric and environmental effects, foreign particles, and stresses generated by rolling contact.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780249
EISBN: 978-1-62708-281-5
... Abstract This article is a detailed account of the mechanisms of fatigue failure of polymers, namely thermal fatigue failure and mechanical fatigue failure. The mechanical fatigue failure is discussed in terms of fatigue crack initiation and fatigue crack propagation. thermal fatigue...
Image
in Overview of the Mechanisms of Failure in Heat Treated Steel Components
> Failure Analysis of Heat Treated Steel Components
Published: 01 September 2008
Image
in Overview of the Mechanisms of Failure in Heat Treated Steel Components
> Failure Analysis of Heat Treated Steel Components
Published: 01 September 2008
Image
Published: 01 February 2005
Image
Published: 01 November 2012
Fig. 26 Mechanism of cavitation pitting fatigue. Serial sketches show a metal wall vibrating to right and left against a liquid, which in all cases is to the right of the wall. The events shown can occur in a very short time, on the order of microseconds. (a) The metal moves to the right
More
Image
Published: 01 December 1989
Fig. 4.38. Creep-fatigue failure-mechanism map for 1Cr-Mo-V steel at 565 °C (1050 °F) ( Ref 134 ).
More
Image
Published: 30 November 2013
Fig. 12 Mechanism of cavitation pitting fatigue. Serial sketches show a metal wall vibrating to the right and left against a liquid, which in all cases is to the right of the wall. The events shown can occur in a very short time, on the order of microseconds. (a) The metal moves to the right
More
Image
Published: 30 September 2023
Figure 4.7: Illustration of the mechanism of fatigue wear. (a) Original surface subject to periodic loading; (b) accumulation of damage near the surface due to the loading; (c) coalescence of damage and propagation to the surface; (d) development of a wear particle (pitting or spalling).
More
Image
Published: 01 October 2011
Fig. 16.25 Schematic of cracking mechanisms with creep-fatigue interaction. (a) Fatigue cracking dominant. (b) Creep cracking dominant. (c) Creep damage influences fatigue crack growth. (d) Creep cracking and fatigue crack occur simultaneously.
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540379
EISBN: 978-1-62708-309-6
... Abstract This appendix presents an analytical model that estimates damage rates for both crack initiation and propagation mechanisms. The model provides a nonarbitrary definition of fatigue crack initiation length, which serves as an analytical link between initiation and propagation analyses...
Abstract
This appendix presents an analytical model that estimates damage rates for both crack initiation and propagation mechanisms. The model provides a nonarbitrary definition of fatigue crack initiation length, which serves as an analytical link between initiation and propagation analyses and appears to have considerable merit in estimating the total fatigue life of notched and cracked structures.
Image
Published: 01 November 2012
Image
in Fatigue Strength of Metals
> Mechanics and Mechanisms of Fracture<subtitle>An Introduction</subtitle>
Published: 01 August 2005
Fig. 3.20 Fatigue fracture mechanisms in Incoloy alloy X750 (UNS N07750) as a function of the stress-intensity factor range, Δ K . Test conditions: 24 °C (75 °F), 300 cycles/min, R = 0.05. The plot of fatigue crack growth rate, da/dN , versus Δ K shows that at high Δ K , the fatigue
More
Image
Published: 01 March 2002
Fig. 14.18 Thermal-mechanical fatigue cracking on internal surface of a nickel-base superalloy forward liner of a gas turbine combustor. Note: One crack extends from a keyhole slot (right), while another can be seen in the area adjacent to an airhole (left). 1.5×
More
Image
Published: 01 June 2008
Image
Published: 01 December 1995
Fig. 6-28 Schematic illustration of the fracture mechanics approach to both fatigue and fracture
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430147
EISBN: 978-1-62708-253-2
... Abstract This chapter provides an outline of the failure modes and mechanisms associated with most boiler tube failures in coal-fired power plants. Primary categories include stress rupture failures, water-side corrosion, fire-side corrosion, fire-side erosion, fatigue, operation failures...
Abstract
This chapter provides an outline of the failure modes and mechanisms associated with most boiler tube failures in coal-fired power plants. Primary categories include stress rupture failures, water-side corrosion, fire-side corrosion, fire-side erosion, fatigue, operation failures, and insufficient quality control.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030117
EISBN: 978-1-62708-282-2
... Abstract This chapter discusses five forms of mechanically assisted degradation of metals: erosion, fretting, fretting fatigue, cavitation and water drop impingement, and corrosion fatigue. Emphasis is placed on the mechanisms and the factors affecting these forms of degradation. erosion...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630189
EISBN: 978-1-62708-270-9
... Abstract The wear caused by contact stress fatigue is the result of a wide variety of mechanical forces and environments. This chapter discusses the characteristics of four types of contact stress fatigue on mating metal surfaces: surface, subsurface, subcase, and cavitation. Features...
Abstract
The wear caused by contact stress fatigue is the result of a wide variety of mechanical forces and environments. This chapter discusses the characteristics of four types of contact stress fatigue on mating metal surfaces: surface, subsurface, subcase, and cavitation. Features and corrective actions for these contact stress fatigue are discussed. The chapter also lists some possible ways to reduce the cavitation fatigue problem.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430325
EISBN: 978-1-62708-253-2
... tube fatigue, including mechanical or vibrational fatigue, corrosion fatigue, thermal fatigue, and creep-fatigue interaction. It discusses the causes, characteristics, and impacts of each type and provides several case studies. boiler tubes corrosion fatigue creep-fatigue interaction fatigue...
Abstract
Boiler tubes subjected to cyclic or fluctuating loads over extended periods of time are prone to fatigue failure. Fatigue can occur at relatively low stresses and is implicated in almost 80% of the tube failures in firetube boilers. This chapter covers the most common forms of boiler tube fatigue, including mechanical or vibrational fatigue, corrosion fatigue, thermal fatigue, and creep-fatigue interaction. It discusses the causes, characteristics, and impacts of each type and provides several case studies.
1