Skip Nav Destination
Close Modal
Search Results for
fatigue life
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 618 Search Results for
fatigue life
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870045
EISBN: 978-1-62708-344-7
... features of the Manson-CoffinBasquin and Langer models Fig. 3.33 High-cycle-fatigue data for a range of metals and alloys. Source: Ref 3.31 Fig. 3.34 Comparison of high-frequency data with fatigue-life predictions for annealed 316 stainless steel at room temperature. (a) Four-point...
Abstract
This chapter familiarizes readers with the methods used to quantify the effects of fatigue on component lifetime and failure. It discusses the development and use of S-N (stress amplitude vs. cycles to failure) curves, the emergence of strain-based approaches to fatigue analysis, and important refinements and modifications. It demonstrates the use of approximate equations, including the method of universal slopes and the four-point correlation technique, which provides reasonable estimates of elastic and plastic lines from information obtained in standard tensile tests. It also discusses high-cycle, low-cycle, and ultra-high cycle fatigue and presents several models that are useful for fatigue life predictions.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250293
EISBN: 978-1-62708-345-4
... in material that may lead to premature gear fatigue failure. The topics covered are alignment, gear tooth, surface durability and breakage of gear tooth, life determined by contact stress and bending stress, analysis of gear tooth failure by breakage after pitting, and metallurgical flaws that reduce the life...
Abstract
This chapter summarizes the various kinds of gear wear and failure and how gear life in service is estimated and discusses the kinds of flaws in material that may lead to premature gear fatigue failure. The topics covered are alignment, gear tooth, surface durability and breakage of gear tooth, life determined by contact stress and bending stress, analysis of gear tooth failure by breakage after pitting, and metallurgical flaws that reduce the life of gears. The chapter briefly reviews some components in the design and structure of each gear and/or gear train that must be considered in conjunction with the teeth to enhance fatigue life.
Image
Published: 01 March 2006
Fig. 10.34 Relation between percent of life to crack initiation and fatigue life data from Ref 10.32 . Source: Ref 10.32
More
Image
in Special Materials: Polymers, Bone, Ceramics, and Composites
> Fatigue and Durability of Structural Materials
Published: 01 March 2006
Fig. 12.20 Relation between percent of life to crack initiation and fatigue life. Source: Ref 12.5
More
Image
in Introduction to Fatigue and Fracture
> Fatigue and Fracture<subtitle>Understanding the Basics</subtitle>
Published: 01 November 2012
Fig. 1 The process of fatigue. (a) Cyclic loading. (b) Fatigue life of steel with an endurance limit and aluminum with no endurance limit. Source: Ref 2
More
Image
in Fatigue and Fracture of Engineering Alloys
> Fatigue and Fracture<subtitle>Understanding the Basics</subtitle>
Published: 01 November 2012
Fig. 21 Effect of case depth on fatigue life. Fatigue tests on induction-hardened 1038 steel automobile axle shafts 32 mm (1.25 in.) in diameter. Case depth ranges given on the chart are depths to 40 HRC. Shafts with lower fatigue life had a total case depth to 20 HRC of 4.5 to 5.2 mm (0.176
More
Image
Published: 01 March 2006
Fig. 4.8 Effect of mean stress on fatigue life. (a) Notched specimen fatigue lives resulting from two types of initial overload; also lives of un-notched specimens subjected to strain histories estimated to occur at notch. (b) Details of load history A. (c) Details of load history B. Source
More
Image
in Life-Assessment Techniques for Combustion Turbines
> Damage Mechanisms and Life Assessment of High-Temperature Components
Published: 01 December 1989
Fig. 9.18. Fatigue-life data for IN 738 samples tested under thermomechanical fatigue conditions ( Ref 18 and 25 ). (a) Plot using strain-range criterion. (b) Plot using maximum-tensile-stress criterion.
More
Image
in Failure Analysis Techniques and Methods for Microelectromechanical Systems (MEMS)[1]
> Microelectronics Failure Analysis: Desk Reference
Published: 01 November 2019
Figure 17 a) SEM image of a resonator designed to test polysilicon for fatigue life. b) A fatigue initiation crack in a specimen similar to the one above.
More
Image
Published: 01 March 2006
Image
Published: 01 December 2000
Image
Published: 01 December 2000
Image
Published: 01 March 2002
Fig. 12.47 Fatigue life of N-155 iron-nickel-base superalloy in the HCF range under reversed bending at various temperatures from room temperature to 816 °C (1500 °F)
More
Image
Published: 01 September 2005
Image
Published: 01 September 2005
Image
Published: 01 September 2005
Fig. 24 Cleanness and rolling contact fatigue life improvements in carburized steels as steelmaking practices have changed. Source: Ref 57
More
Image
Published: 01 December 2018
Fig. 3.6 Relationship between fatigue life, pore size, and DAS. Reprinted with permission from Ref 4 .
More
Image
Published: 01 November 2012
Image
Published: 01 November 2012
Fig. 13 Histograms showing fatigue-life distribution for 57 specimens of a 75S-T6 aluminum alloy tested at 207 MPa (30 ksi). Note the influence of a (a) linear or (b) logarithmic plot of cycles to failure N on the shape of the histogram. Source: Ref 9
More
Image
Published: 01 November 2012
1