Skip Nav Destination
Close Modal
Search Results for
fatigue life
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 455 Search Results for
fatigue life
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870045
EISBN: 978-1-62708-344-7
.... It also discusses high-cycle, low-cycle, and ultra-high cycle fatigue and presents several models that are useful for fatigue life predictions. fatigue design fatigue life analysis high-cycle fatigue S-N curve Introduction Traditional <italic>S-N</italic> Curve In attempting...
Abstract
This chapter familiarizes readers with the methods used to quantify the effects of fatigue on component lifetime and failure. It discusses the development and use of S-N (stress amplitude vs. cycles to failure) curves, the emergence of strain-based approaches to fatigue analysis, and important refinements and modifications. It demonstrates the use of approximate equations, including the method of universal slopes and the four-point correlation technique, which provides reasonable estimates of elastic and plastic lines from information obtained in standard tensile tests. It also discusses high-cycle, low-cycle, and ultra-high cycle fatigue and presents several models that are useful for fatigue life predictions.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250293
EISBN: 978-1-62708-345-4
...Abstract Abstract This chapter summarizes the various kinds of gear wear and failure and how gear life in service is estimated and discusses the kinds of flaws in material that may lead to premature gear fatigue failure. The topics covered are alignment, gear tooth, surface durability...
Abstract
This chapter summarizes the various kinds of gear wear and failure and how gear life in service is estimated and discusses the kinds of flaws in material that may lead to premature gear fatigue failure. The topics covered are alignment, gear tooth, surface durability and breakage of gear tooth, life determined by contact stress and bending stress, analysis of gear tooth failure by breakage after pitting, and metallurgical flaws that reduce the life of gears. The chapter briefly reviews some components in the design and structure of each gear and/or gear train that must be considered in conjunction with the teeth to enhance fatigue life.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060083
EISBN: 978-1-62708-343-0
...Abstract Abstract This chapter compares and contrasts empirical approaches for partitioning hysteresis loops and predicting creep-fatigue life. The first part of the chapter presents experimental partitioning methods, explaining how they can be used to partition any loading cycle into its basic...
Abstract
This chapter compares and contrasts empirical approaches for partitioning hysteresis loops and predicting creep-fatigue life. The first part of the chapter presents experimental partitioning methods, explaining how they can be used to partition any loading cycle into its basic strain-range components. The methods covered include rapid cycling between peak stress extremes, half-cycle rapid loading and unloading, and variations of the incremental step-stress approach. The methods are then compared based on their ability to predict creep-fatigue life. The chapter goes on from there to describe how fatigue life can be estimated from ductility measurements when cyclic data are unavailable or are likely to change. It also explains how cyclic life is influenced by the time-dependent nature of creep-plasticity and the physical and metallurgical effects of environmental exposure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610147
EISBN: 978-1-62708-303-4
... Histograms showing fatigue-life distribution for 57 specimens of a 75S-T6 aluminum alloy tested at 207 MPa (30 ksi). Note the influence of a (a) linear or (b) logarithmic plot of cycles to failure N on the shape of the histogram. Source: Ref 9 Fig. 14 Schematic showing the fatigue curve...
Abstract
This chapter discusses the factors that play a role in fatigue failures and how they affect the service life of metals and structures. It describes the stresses associated with high-cycle and low-cycle fatigue and how they differ from the loading profiles typically used to generate fatigue data. It compares the Gerber, Goodman, and Soderberg methods for predicting the effect of mean stress from bending data, describes the statistical nature of fatigue measurements, and explains how plastic strain causes cyclic hardening and softening. It discusses the work of Wohler, Basquin, and others and how it led to the development of a strain-based approach to fatigue and the use of fatigue strength and ductility coefficients. It reviews the three stages of fatigue, beginning with crack initiation followed by crack growth and final fracture. It explains how fracture mechanics can be applied to crack propagation and how stress concentrations affect fatigue life. It also discusses fatigue life improvement methods and design approaches.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060043
EISBN: 978-1-62708-343-0
... the microstructural damages associated with each of the four basic loading cycles. The discussion then turns to fatigue life prediction for different types of materials and more realistic loading conditions, particularly those in which hysteresis loops have more than one strain-range component. To that end...
Abstract
Strain-range partitioning is a method for assessing the effects of creep fatigue based on inelastic strain paths or strain reversals. The first part of the chapter defines four distinct strain paths that can be used to model any cyclic loading pattern and describes the microstructural damages associated with each of the four basic loading cycles. The discussion then turns to fatigue life prediction for different types of materials and more realistic loading conditions, particularly those in which hysteresis loops have more than one strain-range component. To that end, the chapter considers two cases. In one, the relationship between strain range and cyclic life is established from test data. In the other, a rule is required to determine the damage of each concurrent strain and the total damage of the cycle is used to predict creep-fatigue life. The chapter presents several such damage rules and discusses their applicability in different situations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870179
EISBN: 978-1-62708-344-7
...Abstract Abstract This chapter describes how notches affect the load-carrying capacity and fatigue life of materials under cyclic loads. It explains that stresses and strains can be three to four times higher in the vicinity of a notch, greatly accelerating fatigue damage. It discusses the use...
Abstract
This chapter describes how notches affect the load-carrying capacity and fatigue life of materials under cyclic loads. It explains that stresses and strains can be three to four times higher in the vicinity of a notch, greatly accelerating fatigue damage. It discusses the use of stress concentration factors and how they are determined for the general case and for specific geometries, materials, and surface conditions. The chapter covers both elastic and plastic fatigue behaviors as well as a wide range of methods. It also explains how small nuances in loading can introduce tensile or compressive stress in the hysteresis loops causing variations in fatigue life as large as 50:1 depending on where the transition in fatigue behavior occurs.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870075
EISBN: 978-1-62708-344-7
... and the methods used to calculate or predict its effect on the fatigue life of machine components. The discussion also sheds light on why tensile mean stress is detrimental to both fatigue life and ductility, while compressive mean stress is highly beneficial. fatigue life hysteresis loops mean stress...
Abstract
This chapter discusses the concept of mean stress and explains how it is used in fatigue analysis and design. It begins by examining the stress-strain response of test samples subjected to cyclic forces and strains, noting important features and what they reveal about materials and their fatigue behaviors. It then discusses the challenge of developing hysteresis loops for complex loading patterns and accounting for effects such as ratcheting and stress relaxation. The sections that follow provide a summary of the various ways mean stress is described in the literature and the methods used to calculate or predict its effect on the fatigue life of machine components. The discussion also sheds light on why tensile mean stress is detrimental to both fatigue life and ductility, while compressive mean stress is highly beneficial.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870267
EISBN: 978-1-62708-344-7
... that concentrate strains, preventing or removing surface damage, and by inducing compressive mean stresses that prolong fatigue life. It also discusses the use of property conditioning and restoration treatments, the benefits of interference fits and processes such as coaxing, the effects of assembly damage...
Abstract
This chapter is largely a compendium of best practices and procedures for minimizing the effects of fatigue. It explains how to make products more resistant to fatigue by choosing the right materials and manufacturing processes, avoiding geometries and features that concentrate strains, preventing or removing surface damage, and by inducing compressive mean stresses that prolong fatigue life. It also discusses the use of property conditioning and restoration treatments, the benefits of interference fits and processes such as coaxing, the effects of assembly damage and operating overload, the importance of surface cleanliness and finish, and the role of inspection, testing, replacement, and repair in safe-life and fail-safe designs. Examples highlighting the benefits and potential pitfalls of proof loading tests are included as well.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540383
EISBN: 978-1-62708-309-6
...Abstract Abstract Fatigue life analysis and crack growth life prediction require an accurate interpretation of the load spectrum. This appendix presents two methods for interpreting load spectra and provides several data plots and tables comparing fatigue test data with analytically predicted...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240243
EISBN: 978-1-62708-251-8
... and growth occurs. It describes the most effective methods of improving fatigue life. The chapter also explains the effect of geometrical stress concentrations on fatigue. In addition, it explores the environmental effects of corrosion fatigue, low-temperature fatigue, high-temperature fatigue, and thermal...
Abstract
Fatigue failures occur due to the application of fluctuating stresses that are much lower than the stress required to cause failure during a single application of stress. This chapter describes three basic factors that cause fatigue: a maximum tensile stress of sufficiently high value, a large enough variation or fluctuation in the applied stress, and a sufficiently large number of cycles of the applied stress. The discussion covers high-cycle fatigue, low-cycle fatigue, and fatigue crack propagation. The chapter then discusses the stages where fatigue crack nucleation and growth occurs. It describes the most effective methods of improving fatigue life. The chapter also explains the effect of geometrical stress concentrations on fatigue. In addition, it explores the environmental effects of corrosion fatigue, low-temperature fatigue, high-temperature fatigue, and thermal fatigue. Finally, the chapter discusses a number of design philosophies or methodologies to deal with design against fatigue failures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610263
EISBN: 978-1-62708-303-4
... diameter, in. Breaking strength, ksi A325 A490 ½ 17.0 21.3 ¾ 40.1 50.1 1 72.7 90.9 1¼ 102 145 1½ 147 211 Source: Ref 15 Fig. 9 Residual stress state around cold-worked hole. Courtesy of Fatigue Technology, Inc. Source: Ref 12 Fig. 10 Fatigue life...
Abstract
This chapter discusses the fatigue behavior of bolted, riveted, and welded joints. It describes the relative strength of machined and rolled threads and the effect of thread design, preload, and clamping force on the fatigue strength of bolts made from different steels. It explains where fatigue failures are likely to occur in cold-driven rivet and friction joints, and why the fatigue strength of welded joints can be much lower than that of the parent metal, depending on weld shape, joint geometry, discontinuities, and residual stresses. The chapter also explains how to improve the fatigue life of welded joints and discusses the factors that can reduce the fracture toughness of weld metals.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540121
EISBN: 978-1-62708-309-6
... strain hardening and softening, both of which lead to premature failure. It then discusses the stages of fatigue fracture, using detailed images to show how cracks initiate and grow and how they leave telltale marks on fracture surfaces. It goes on to describe fatigue life assessment methods...
Abstract
This chapter examines the stress-strain characteristics of metals and alloys subjected to cyclic loading and the cumulative effects of fatigue. It begins by explaining how a single load reversal can lower the yield stress of a material and how repeated reversals can cause strain hardening and softening, both of which lead to premature failure. It then discusses the stages of fatigue fracture, using detailed images to show how cracks initiate and grow and how they leave telltale marks on fracture surfaces. It goes on to describe fatigue life assessment methods and demonstrate their use on different metals and alloys. The chapter also discusses design-based approaches for preventing fatigue failures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870099
EISBN: 978-1-62708-299-0
... origin. 235 x . (g) Fatigue striations near the termination of cracking. 30 x Fig. 31 Examples of strain-life plots. (a) Typical plot of strain range versus cycles-to-failure for low-cycle fatigue. (b) Plastic strain range plot showing the deleterious effect of aqueous chloride solution...
Abstract
Environmentally assisted cracking is a generic term that includes various cracking phenomena such as stress-corrosion cracking (SCC), corrosion fatigue cracking, and liquid-metal embrittlement. This chapter describes these cracking mechanisms beginning with SCC and the factors that influence its formation. It covers alloy selection and mitigation techniques and includes examples of SCC in aircraft components. The chapter also addresses corrosion fatigue, explaining how different environments and operating conditions affect crack propagation, fatigue strength, and fatigue life. It includes information on liquid-metal embrittlement as well.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2022
DOI: 10.31399/asm.tb.mbheaktmse.t56030001
EISBN: 978-1-62708-418-5
... to assess fatigue performance. It discusses the influence of defects on fatigue life, the effect of temperature and grain size on fatigue-crack propagation, and the role of nanotwinning in crack-growth retardation. It describes the methods used to produce HEAs in bulk and powder form and to apply them...
Abstract
This chapter summarizes the progress that has been made in the study of high-entropy alloy (HEA) systems and the process-structure-property relationships that define them. It describes the various ways HEAs can be strengthened and explains how alloying elements influence tensile and yield strength, fracture toughness, and fracture strength. It discusses the stages of plastic deformation in HEAs and the role of dislocations and twinning in the evolution of microstructure. It reviews some of the work that has been done on fatigue behaviors and the methods developed to assess fatigue performance. It discusses the influence of defects on fatigue life, the effect of temperature and grain size on fatigue-crack propagation, and the role of nanotwinning in crack-growth retardation. It describes the methods used to produce HEAs in bulk and powder form and to apply them as protective coatings and films. It also identifies potential applications based on properties such as strength, hardness, density, wear resistance, high-temperature stability, and biocompatibility.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610327
EISBN: 978-1-62708-303-4
... for several polymers at 25 °C (77 °F). ABS, acrylonitrile-butadiene-styrene. Source: Ref 23 Fig. 27 Fatigue life in polytetrafluoroethylene with increasing crystallinity. Δ, low crystallinity, air quenched; □, medium crystallinity, 33.3 °C/h cooling; O, high crystallinity, 5.6 °C/h cooling. Test...
Abstract
This chapter covers the fatigue and fracture behaviors of ceramics and polymers. It discusses the benefits of transformation toughening, the use of ceramic-matrix composites, fracture mechanisms, and the relationship between fatigue and subcritical crack growth. In regard to polymers, it covers general characteristics, viscoelastic properties, and static strength. It also discusses fatigue life, impact strength, fracture toughness, and stress-rupture behaviors as well as environmental effects such as plasticization, solvation, swelling, stress cracking, degradation, and surface embrittlement.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060155
EISBN: 978-1-62708-343-0
... for treating multiaxiality, a concise listing of the rules, and an example problem in which axial creep-fatigue data is used to predict the torsional creep-fatigue life of type 304 and 316 stainless steel. The chapter also includes a brief introduction in which the authors outline the challenges presented...
Abstract
This chapter addresses the question of how to deal with multiaxial stresses and strains when using the strain-range partitioning method to analyze the effects of creep fatigue. It is divided into three sections: a general discussion on the rationale used in formulating rules for treating multiaxiality, a concise listing of the rules, and an example problem in which axial creep-fatigue data is used to predict the torsional creep-fatigue life of type 304 and 316 stainless steel. The chapter also includes a brief introduction in which the authors outline the challenges presented by multiaxial loading and set practical limits on the problem they intend to treat.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540379
EISBN: 978-1-62708-309-6
... analyses and appears to have considerable merit in estimating the total fatigue life of notched and cracked structures. damage rate fatigue crack initiation fatigue crack propagation fatigue life nonarbitrary crack size LOW-CYCLE FATIGUE CONCEPTS based on the local stress-strain approach...
Abstract
This appendix presents an analytical model that estimates damage rates for both crack initiation and propagation mechanisms. The model provides a nonarbitrary definition of fatigue crack initiation length, which serves as an analytical link between initiation and propagation analyses and appears to have considerable merit in estimating the total fatigue life of notched and cracked structures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540297
EISBN: 978-1-62708-309-6
... toughness, fatigue life, and stress rupture failures. ceramics engineering plastics fatigue crack propagation fracture toughness glasses mechanical behavior IN PREVIOUS CHAPTERS, discussion has focused on metals—their mechanical behavior and the analytical methods applicable to them...
Abstract
Structural and fracture mechanics-based tools for metals are believed to be applicable to nonmetals, as long as they are homogeneous and isotropic. This chapter discusses the essential aspects of the fatigue and fracture behaviors of nonmetallic materials with an emphasis on how they compare with metals. It begins by describing the fracture characteristics of ceramics and glasses along with typical properties and subcritical crack growth mechanisms. It then discusses the properties of engineering plastics and the factors affecting crack formation and growth, fracture toughness, fatigue life, and stress rupture failures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610209
EISBN: 978-1-62708-303-4
... Correlation factors for surface roughness (<italic>K</italic><sub>s</sub>), type of loading (<italic>K</italic><sub>I</sub>), and part diameter (<italic>K<sub>d</sub></italic>) for fatigue life of steel parts Table 2 Correlation factors for surface roughness ( K s ), type of loading ( K I ), and part...
Abstract
This chapter provides information and data on the fatigue and fracture properties of steel, aluminum, and titanium alloys. It explains how microstructure, grain size, inclusions, and other factors affect the fracture toughness and fatigue life of these materials and the extent to which they can be optimized. It also discusses the effect of metalworking and heat treatment, the influence of loading and operating conditions, and factors such as corrosion damage that can accelerate crack growth rates.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320133
EISBN: 978-1-62708-347-8
... the effects of white layer formation in nitrided gears and presents general recommendations for nitrided gears. The chapter describes the microstructure, overload and fatigue damage, bending-fatigue life, cost, and distortion of nitrided gears. Information on nitriding steels used in Europe...
Abstract
Nitriding is a case-hardening process used for alloy steel gears and is quite similar to case carburizing. Nitriding of gears can be done in either a gas or liquid medium containing nitrogen. This chapter discusses the processes involved in gas nitriding. It reviews the effects of white layer formation in nitrided gears and presents general recommendations for nitrided gears. The chapter describes the microstructure, overload and fatigue damage, bending-fatigue life, cost, and distortion of nitrided gears. Information on nitriding steels used in Europe and the applications of nitrided gears are also provided. The chapter presents case studies on successful nitriding of a gear and on the failure of nitrided gears used in a gearbox subjected to a load with wide fluctuations.