Skip Nav Destination
Close Modal
Search Results for
fatigue crack propagation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 422 Search Results for
fatigue crack propagation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2003
Fig. 3 Thermal fatigue failure and conventional fatigue crack propagation fracture during reversed load cycling of acetal. Source: Ref 10
More
Image
Published: 01 June 2008
Image
Published: 01 December 1989
Fig. 4.43. Results of 20 experiments showing correlation of fatigue-crack-propagation rates in A533B steel in terms of cyclic J for a variety of specimen configurations ( Ref 168 ).
More
Image
Published: 01 July 1997
Image
Published: 01 September 2008
Image
Published: 01 November 2012
Image
Published: 01 December 2003
Fig. 7 Specimens employed in fatigue crack propagation studies. (a) Single-edge-notch specimen. (b) Compact-tension specimen
More
Image
Published: 01 December 2003
Fig. 11 Comparison of fatigue crack propagation behavior in the Paris regime for several amorphous and semicrystalline polymers. Note enhanced fatigue resistance of the semicrystalline polymers. PC, polycarbonate; PMMA, polymethyl methacrylate; PPO, polypropylene oxide; PVF, polyvinyl formal
More
Image
Published: 01 December 2003
Fig. 12 Fatigue crack propagation behavior for a rubber-toughened epoxy. The addition of rubber decreases the slope, m , at high crack growth rates due to toughening mechanisms and retarded crack growth. CTBN, carboxylterminated polybutadiene acrylonitrile rubber; MBS, methacrylate-butadiene
More
Image
Published: 01 December 2003
Fig. 8 An S-shaped fatigue crack propagation. K , stress-intensity factor; K c , fracture toughness curve indicating its three characteristic regions.
More
Image
Published: 01 December 2003
Fig. 9 Fatigue crack propagation behavior of various polymers. PSU, polysulfone; PMMA, polymethyl methacrylate; PC, polycarbonate; PS, polystyrene; PVC, polyvinyl chloride. Source: Ref 48
More
Image
Published: 01 December 2003
Fig. 10 The rate of fatigue crack propagation of injection-molded glass-reinforced polyvinyl chloride composites containing 10 and 30% glass as a function of the energy release rate, J I . Arrows indicate the critical energy release rate, J Ic , for each.
More
Image
Published: 01 December 2003
Fig. 11 Fatigue crack propagation rates ( da / dN ) at 10 Hz as a function of stress-intensity factor range (Δ K ) in low-density polyethylene. da / dN decreases with increasing Δ K . Source: Ref 51
More
Image
Published: 01 December 2003
Fig. 9 Fatigue-crack-propagation behavior. ABS, acrylonitrile-butadiene-styrene; PC, polycarbonate; M-PPE, modified polyphenylene ether
More
Image
Published: 01 December 2000
Fig. 12.29 Fatigue crack propagation data for mill-annealed alpha-beta alloy Ti-6Al-4V showing data scatter. Data are for six heats of mill-annealed Ti-6Al-4V. T-L, transverse-longitudinal
More
Image
Published: 01 December 2000
Fig. 12.43 Comparison of room-temperature fatigue crack propagation rate for a Ti-6Al-4V powder metallurgy compact with the scatter bands for wrought ingot metallurgy products of the alloy. I/M, ingot metallurgy; P/M, powder metallurgy
More
Image
Published: 01 December 2000
Fig. 12.49 Fatigue crack propagation rates for Ti-5Al-2.5Sn and Ti-6Al-4V alloys in the low-temperature region. NI = normal interstitial content; ELI = extra low interstitial content
More
Image
Published: 01 August 2005
Image
Published: 01 August 2005
Fig. 5.61 Schematic stress profiles for fatigue crack propagation testing showing the effects of overload/underload with hold time. Source: Ref 5.72
More
Image
Published: 01 August 2005
Fig. 5.68 Influence of testing temperature on fatigue crack propagation exponent for iron-base alloys. Source: Ref 5.83
More
1