Skip Nav Destination
Close Modal
Search Results for
fatigue crack growth
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 567 Search Results for
fatigue crack growth
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Fatigue and Fracture of Engineering Alloys
> Fatigue and Fracture<subtitle>Understanding the Basics</subtitle>
Published: 01 November 2012
Fig. 58 Influence of texture on fatigue crack growth in Ti-6Al-4V. Fatigue crack growth rates are higher when basal planes are loaded in tension. The elastic modulus in tension for the basal texture (B) is 109 GPa (15.8 × 10 6 psi); for the transverse texture (T), 126 GPa (18.3 × 10 6 psi
More
Image
Published: 01 August 2005
Fig. 5.40 Fatigue crack growth behavior of 7075-T6 aluminum under remote and crack-line loading conditions. Source: Ref 5.41
More
Image
Published: 30 June 2023
Fig. 9.16 Fatigue crack growth testing and data analysis. (a) Crack length measurement, (b) calculation of crack growth rate, and (c) analysis of da/dN versus stress intensity range.
More
Image
Published: 01 October 2011
Fig. 7.25 Fatigue crack growth per fatigue cycle ( da / dN ) versus stress intensity variation ( Δ K ) per cycle. The C and n are constants that can be obtained from the intercept and slope, respectively, of the linear log da / dN versus log Δ K plot. This equation for fatigue crack
More
Image
Published: 01 September 2008
Fig. 18 Schematic representation of the R ratio effect on fatigue crack growth curves. The near-threshold, Paris regime, and final failure regions are also indicated on the curves.
More
Image
Published: 01 June 2008
Image
Published: 01 December 2001
Fig. 21 Fatigue crack growth rate results for two A588 grade A HSLA steels showing comparison of LS and SL testing orientations. CON, conventional; CaT, calcium treatment. Improved isotropy of the calcium-treated steel is noted.
More
Image
Published: 01 December 2001
Fig. 22 Range of fatigue crack growth notes at Δ k = 55 MPa m (50 ksi in ) in six testing orientations for conventional (CON) and calcium-treated (CaT) quality plates of A516-70, A533B-1, and A514F. Improved isotropy of quality levels is demonstrated for calcium-treated
More
Image
Published: 01 March 2002
Fig. 12.38 Fatigue crack growth rate behavior of IN-718 nickel-base superalloy tested in air at 649 °C (1200 °F)
More
Image
Published: 01 March 2002
Fig. 12.39 Schematic of idealized fatigue crack growth curve. R , minimum stress divided by maximum stress in a fatigue cyce
More
Image
Published: 01 March 2002
Fig. 12.41 Effect of grain size on fatigue crack growth rate of AP-1 nickel-base superalloy at room temperature
More
Image
Published: 01 March 2002
Fig. 12.42 Effect of grain size on fatigue crack growth rate of P/M Astroloy at 649 °C (1200 °F)
More
Image
Published: 01 March 2002
Fig. 12.45 Effect of air vs. helium on fatigue crack growth rate of IN-718 nickel-base superalloy at 649 °C (1200 °F)
More
Image
Published: 01 July 2000
Fig. 7.119 Fatigue-crack-growth rates as a function of stress-intensity amplitude for X-65 line pipe steel in air. Frequency 0.1–15 Hz, at R = 0.2. Redrawn from Ref 169
More
Image
Published: 01 July 2000
Fig. 7.120 Corrosion-fatigue-crack-growth rate as a function of stress-intensity range for a maraging steel in air and 3% NaCl solution. Source: Ref 171
More
Image
Published: 01 July 2000
Fig. 7.121 Corrosion-fatigue-crack-growth rate as a function of stress-intensity range for high-strength 4340M steel in vacuum and distilled water at 23 °C. Data for vacuum and indicated frequencies and R = 0. Source: Ref 172
More
Image
Published: 01 July 2000
Fig. 7.122 Corrosion-fatigue-crack-growth rate as a function of stress-intensity range for X-65 line pipe steel in air and in 3.5% NaCl solution under cathodic coupling to zinc. Cycled at indicated frequencies and R = 0.2. Coupled potential = –800 ± 10 mV (SHE). (Note: Original reference
More
Image
Published: 01 July 2000
Fig. 7.123 Corrosion-fatigue-crack-growth rate as a function of stress-intensity range for X-65 line pipe steel in air and at the free corrosion potential in 3.5% NaCl at indicated frequencies and R = 0.2. Corrosion potential = –440 ± 30 mV (SHE). (Note: Original reference includes data
More
Image
Published: 01 July 2000
Fig. 7.124 Corrosion-fatigue-crack-growth rate as a function of stress-intensity range for Ti-6Al-4V alloy in air and in 0.6 M NaCl at indicated frequencies and R = 0.1. Source: Ref 170
More
Image
Published: 01 July 2000
Fig. 7.125 Corrosion-fatigue-crack-growth rate as a function of stress-intensity range for a high-strength aluminum alloy in dry argon and indicated halide solutions. Source: Ref 173
More
1