Skip Nav Destination
Close Modal
Search Results for
fansteel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-8 of 8
Search Results for fansteel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Main transmission housing for a heavy lift helicopter that was sand cast in...
Available to PurchasePublished: 01 October 2012
Fig. 1.8 Main transmission housing for a heavy lift helicopter that was sand cast in WE43B magnesium alloy having a T6 temper. Casting weight = 93 kg (206 lb). Courtesy of Fansteel Wellman Dynamics. Source: Ref 1.3
More
Image
Magnesium alloy sand castings. (a) Main transmission housing for a heavy li...
Available to PurchasePublished: 01 October 2012
Fig. 3.12 Magnesium alloy sand castings. (a) Main transmission housing for a heavy lift helicopter that was sand cast in WE43B magnesium alloy having a T6 temper. Casting weight = 206 lb (93 kg). Courtesy of Fansteel Wellman Dynamics. (b) Gearbox housing for a military fighter aircraft
More
Book Chapter
Titanium—A New Metal for the Aerospace Age
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 May 2018
DOI: 10.31399/asm.tb.hma.t59250129
EISBN: 978-1-62708-287-7
... development), Driver-Harris (wire drawing), Fansteel Metallurgical (coatings), A.O. Smith (welding), Sam Tour (chemical analysis), Worcester Pressed Steel (sheet forming), and dozens of firms with smaller activities. The production of titanium sponge and titanium metal products was slow in getting started...
Abstract
This chapter is a detailed account of the history of development of titanium and its modern applications in the aerospace market. It begins by discussing the attempts made to produce titanium metal. This is followed by a discussion on the invention of a process for making titanium by William Kroll. Various studies on the properties on titanium and research programs related to the production of titanium sponge and titanium metal products are then described. The chapter concludes with a discussion of titanium use in jet engines.
Book Chapter
Introduction and Uses of Lightweight Materials
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550001
EISBN: 978-1-62708-307-2
... for a heavy lift helicopter that was sand cast in WE43B magnesium alloy having a T6 temper. Casting weight = 93 kg (206 lb). Courtesy of Fansteel Wellman Dynamics. Source: Ref 1.3 Magnesium has a hexagonal close-packed (hcp) structure that has limited slip planes. Therefore, magnesium alloys have...
Abstract
Engineers have many materials to choose from when dealing with weight-related design constraints. The list includes aluminum, beryllium, magnesium, and titanium alloys as well as engineering plastics, structural ceramics, and polymer-, metal-, and ceramic-matrix composites. This chapter provides a brief overview of these lightweight materials, discussing their primary advantages along with their properties, behaviors, and limitations.
Book Chapter
Refractory Metal Alloys
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170308
EISBN: 978-1-62708-297-6
Abstract
This article discusses the role of alloying in the production and use of common refractory metals, including molybdenum, tungsten, niobium, tantalum, and rhenium. It provides an overview of each metal and its alloys, describing the compositions, properties, and processing characteristics as well as the effect of alloying elements. It also discusses strengthening mechanisms and, where appropriate, corrosion behavior.
Book Chapter
Magnesium Alloys
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550141
EISBN: 978-1-62708-307-2
.... 3.12 Magnesium alloy sand castings. (a) Main transmission housing for a heavy lift helicopter that was sand cast in WE43B magnesium alloy having a T6 temper. Casting weight = 206 lb (93 kg). Courtesy of Fansteel Wellman Dynamics. (b) Gearbox housing for a military fighter aircraft composed of ZE41A...
Abstract
Magnesium, by volume, is two-thirds the weight of aluminum and one-quarter the weight of steel. It also has good damping capacity, giving it an edge over other metals in high-vibration environments. This chapter discusses the basic metallurgy, alloy designations, compositions, and mechanical properties of cast and wrought magnesium alloys. It also describes the processes used to produce magnesium parts, the causes and effects of corrosion, and the use of protective coatings and treatments.
Book Chapter
Corrosion Characteristics of Structural Materials
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910237
EISBN: 978-1-62708-250-1
Abstract
All materials are susceptible to corrosion or some form of environmental degradation. Although no single material is suitable for all applications, usually there are a variety of materials that will perform satisfactorily in a given environment. The intent of this chapter is to review the corrosion behavior of the major classes of metals and alloys as well as some nonmetallic materials, describe typical corrosion applications, and present some unique weaknesses of various types of materials. It also aims to point out some unique material characteristics that may be important in material selection, and discuss, where appropriate, the characteristic forms of corrosion that attack specific materials. The materials addressed in this chapter include carbon steels, weathering steels, and alloy steels; nickel, copper, aluminum, titanium, lead, magnesium, tin, zirconium, tantalum, niobium, and cobalt and their alloys; polymers; and other nonmetallic materials, including rubber, carbon and graphite, and woods.
Book
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.9781627082976
EISBN: 978-1-62708-297-6