Skip Nav Destination
Close Modal
Search Results for
fabrication
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1054 Search Results for
fabrication
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060117
EISBN: 978-1-62708-261-7
... Abstract This chapter describes the processes involved in the fabrication of wrought and cast metal products. It discusses deformation processes including bending and forming, material removal processes such as milling, cutting, and grinding, and joining methods including welding, soldering...
Abstract
This chapter describes the processes involved in the fabrication of wrought and cast metal products. It discusses deformation processes including bending and forming, material removal processes such as milling, cutting, and grinding, and joining methods including welding, soldering, and brazing. It also discusses powder consolidation, rolling, drawing and extrusion, and common forging methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870101
EISBN: 978-1-62708-314-0
... Abstract This chapter discusses the tooling used for autoclave curing, one of the most common composite fabrication processes. The discussion covers curing practices, material selection factors, and design challenges associated with thermal expansion, tool shrinkage, part complexity...
Abstract
This chapter discusses the tooling used for autoclave curing, one of the most common composite fabrication processes. The discussion covers curing practices, material selection factors, and design challenges associated with thermal expansion, tool shrinkage, part complexity, and heating and cooling rates. The chapter also includes best practices and recommendations for toolmaking and assembly.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870119
EISBN: 978-1-62708-314-0
... Abstract This chapter familiarizes readers with the many and varied thermoset composite fabrication processes and the types of applications for which they were developed. It describes wet lay-up, prepreg lay-up, and low-temperature vacuum bag curing prepreg processes, which are best suited...
Abstract
This chapter familiarizes readers with the many and varied thermoset composite fabrication processes and the types of applications for which they were developed. It describes wet lay-up, prepreg lay-up, and low-temperature vacuum bag curing prepreg processes, which are best suited for low-volume, medium-sized and larger parts. It also discusses filament winding and preforming processes (including weaving, knitting, stitching, and braiding) in addition to resin-transfer molding, resin film infusion, and pultrusion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870183
EISBN: 978-1-62708-314-0
... Abstract This chapter discusses thermoplastic composite fabrication processes and related equipment and procedures. The discussion covers consolidation and thermoforming operations as well as joining methods. composite fabrication consolidation joining thermoforming thermoplastic...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860115
EISBN: 978-1-62708-338-6
... to procure these tools are much shorter. Alterations to the mandrel and other fabrication tools are far easier to implement; thus, design changes are easily implemented. Composites are basically unaffected by stress-corrosion cracking; however, metals are severely limited. Stress corrosion can result...
Abstract
The necessity of developing the lightest-weight structures with sufficient strength was the driving factor for the development of filament-wound composite pressure vessels. This chapter presents a brief history of the development of rocket motor cases (RMCs), followed by a comparison of the advantages of composites over metals for RMCs. A discussion on a typical design, analysis, and manufacturing operation follows. The chapter introduces the basic design approach and shows some sizing techniques along with example calculations. It discusses the processes involved in the testing of the composite pressure vessel.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220185
EISBN: 978-1-62708-341-6
... and describes some of the most widely used coils and common design modifications. Specialty coil designs for specific applications are also discussed. The chapter concludes with sections devoted to coil fabrication and design of power-supply leads. induction coil design induction heating inductors...
Abstract
Coil design for induction heating has been developed and refined over time based on the theoretical principles applied in practice to several simple inductor geometries such as the classical solenoidal coil. This chapter reviews the fundamental considerations in the design of inductors and describes some of the most widely used coils and common design modifications. Specialty coil designs for specific applications are also discussed. The chapter concludes with sections devoted to coil fabrication and design of power-supply leads.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.9781627083089
EISBN: 978-1-62708-308-9
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740001
EISBN: 978-1-62708-308-9
... or an electric arc furnace to produce steel that usually has a carbon content of less than 1 wt%. After the pig iron has been reduced to steel, it is cast into ingots or continuously cast into slabs. Cast steels are then hot worked to improve homogeneity, refine the as-cast microstructure, and fabricate desired...
Abstract
This chapter discusses the processes, procedures, and equipment used in the production of iron, steel, aluminum, and titanium alloys. It describes the design and operation of melting and refining furnaces, including blast furnaces, basic oxygen and electric arc furnaces, vacuum induction melting furnaces, and electroslag and vacuum arc remelting furnaces. It also covers casting, rolling, and annealing procedures and describes the basic steps in aluminum and titanium production.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050317
EISBN: 978-1-62708-311-9
...) Materials listed are available from a number of manufacturers. Source: Ref 2 Water Flow in Coils Coils with inadequate water flow will melt or will have soldered or brazed joints fail. Care must be taken in the fabrication of the coils to minimize restrictions. As with all piping used to carry...
Abstract
This appendix provides practical information on induction coils and how they are made. It discusses soldering methods, preferred materials, design challenges, and best practices and procedures. It also discusses the design, construction, and application of magnetic flux concentrators and the growing use of computer simulation.
Image
in Cold Spray Applications in the Automotive Industry
> High Pressure Cold Spray: Principles and Applications
Published: 01 June 2016
Fig. 8.3 Practical example of shaft fabrication via cold gas dynamic spraying additive manufacturing technology, which was conducted by General Electric. Source: Ref 8.28
More
Image
in Cold Spray Applications in the Automotive Industry
> High Pressure Cold Spray: Principles and Applications
Published: 01 June 2016
Fig. 8.6 Leak test of cold-spray-assisted fabrication of aluminum heat exchanger. (a) Before and (b) after the 500 h corrosion test. Source: Ref 8.20
More
Image
Published: 01 October 2012
Fig. 8.4 Major polymer-matrix composite fabrication processes. Source: Ref 8.1
More
Image
Published: 01 October 2012
Fig. 8.44 Fabrication methods for thermoplastic composite sheet stock. (a) Platen press. (b) Double belt press. Source: Ref 8.1
More
Image
Published: 01 November 2010
Fig. 1.3 Major polymer matrix composite fabrication processes
More
Image
Published: 01 November 2010
Fig. 5.22 Fabrication of large prototype lay-up tools. NC, numerical control
More
Image
Published: 01 January 2015
Fig. 9.8 German Fabrication Machines’ radial precision forging machine. Courtesy of Timet
More
Image
in Forming of Titanium Plate, Sheet, Strip, and Tubing[1]
> Titanium: Physical Metallurgy, Processing, and Applications
Published: 01 January 2015
Fig. 11.10 Superplastic forming enables the fabrication of multipiece, complex parts into a single piece. (a) Conventionally fabricated part. (b) Superplastically formed part
More
Image
in Forming of Titanium Plate, Sheet, Strip, and Tubing[1]
> Titanium: Physical Metallurgy, Processing, and Applications
Published: 01 January 2015
Fig. 11.13 Fabrication of Ti-6Al-4V sheet structure using a combination of superplastic forming and diffusion bonding
More
Image
Published: 01 November 2010
Fig. 9.8 Fabrication methods for the honeycomb core. Source: Ref 4
More
1