Skip Nav Destination
Close Modal
Search Results for
extruded shapes
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 234 Search Results for
extruded shapes
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 August 1999
Fig. 9 Transverse sections were taken from a 7075-T6 extruded shape and macroetched. Various specimen locations are also shown: A—tensile bar, longitudinal; B and C—tensile bar, long transverse; D—tensile bar, transverse; E—tensile bar, short transverse; F—C-ring, short transverse. Micrographs
More
Image
in Secondary Working of Bar and Billet[1]
> Titanium: Physical Metallurgy, Processing, and Applications
Published: 01 January 2015
Image
Published: 01 March 2000
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2000
DOI: 10.31399/asm.tb.aet.t68260149
EISBN: 978-1-62708-336-2
... Abstract This chapter discusses the extrusion characteristics of relatively soft aluminum alloys. It begins by identifying alloy designations within the class and the types of extrusions made from them. It then explains how extruded shapes and cross-sections are defined and how to analyze...
Abstract
This chapter discusses the extrusion characteristics of relatively soft aluminum alloys. It begins by identifying alloy designations within the class and the types of extrusions made from them. It then explains how extruded shapes and cross-sections are defined and how to analyze and assess important process variables such as runout, extrusion pressure, ram speed, and butt thickness. It also provides best practices for various operations and explains how to identify and remedy common extrusion defects.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2000
DOI: 10.31399/asm.tb.aet.t68260187
EISBN: 978-1-62708-336-2
... resistance and a tendency for incipient melting at relatively low hot-working temperatures ( Ref 6 , 7 ). The most commonly used alloy for small- and large-shaped extruded sections in the aircraft industry is 7075, which offers a high strength-to-weight ratio. Alloys and Extrudability Extrudability...
Abstract
This chapter discusses the extrusion characteristics of hard aluminum alloys, particularly those in the 5000 and 7000 series. It begins with a review of two studies, one showing how the extrudability of 7 xxx alloys varies with the presence and amount of different alloying elements, the other relating minimum wall thickness with circumscribing circle diameter. It then explains how oxides on either the billet or container complicate the control of extrusion as well as auxiliary processes and how material flow and the movement of trapped gasses in different regions of the extrusion can lead to defects and variations in strength. It also discusses the extrusion of aluminum matrix composites and explains how composite billets are made.
Image
Published: 01 March 2000
Fig. 30 Change of shape of the extruded aluminum alloy square tube (a) before die wear and (b) after die wear
More
Image
Published: 01 December 2006
Fig. 7.30 General extruded material-specific design of the shape-forming aperture and entry form of extrusion dies. The designs apply to (a) pure and low-alloyed aluminum alloys, (b) higher-alloyed aluminum alloys, (c) magnesium alloys, (d) lead alloys, (e) copper-zinc alloys, (f) copper
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480225
EISBN: 978-1-62708-318-8
... Abstract This chapter discusses the equipment and processes used to convert titanium billet and bar into useful shapes or more refined product forms. These secondary working operations include open-die, closed-die, hot-die and isothermal forging as well as ring rolling and extruding...
Abstract
This chapter discusses the equipment and processes used to convert titanium billet and bar into useful shapes or more refined product forms. These secondary working operations include open-die, closed-die, hot-die and isothermal forging as well as ring rolling and extruding. The chapter describes each method in detail and how it affects the microstructure and mechanical properties of various titanium alloys. It also discusses the propensity of titanium to react with oxygen and hydrogen when heated and explains how to mitigate the effects.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480207
EISBN: 978-1-62708-318-8
.... The procedures used in extruding titanium are similar to practices used in extruding steel. The process produces rounds, shapes, tubes, and hollow shapes. Cold extrusion of titanium including hydrostatic extrusion has been performed, but it is not a commercial process. Hot extrusion is used to produce long...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980417
EISBN: 978-1-62708-342-3
... the section as well as defect-free extrusion welds in the extruded section with hollow sections and tubes Enable high throughputs with simultaneous optimal quality of the produced extrusion for dimensional stability, shape accuracy, and surface quality Have low maintenance costs Offer a favorable...
Abstract
This chapter begins with a description of the requirements of tooling and tooling material for hot extrusion. It covers the processes of designing tool and die sets for direct and indirect extrusion. Next, the chapter provides information on extrusion tooling and die sets for direct external and internal shape production and tools for copper alloy extrusion. Further, it addresses design, calculation, and dimensioning of single-piece and two-part containers and describes induction heating for containers. Information on static- and elastic-based analysis and dimensioning of containers loaded in three dimensions is provided. Examples of calculations for different containers, along with their stresses and dimensions, are presented and the manufacture, operation, and maintenance of containers are described. The chapter further discusses the properties and applications of hot working materials for the manufacture of extrusion tooling and of different extruded materials for the manufacture of extrusion tooling for direct and indirect forming.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2000
DOI: 10.31399/asm.tb.aet.t68260001
EISBN: 978-1-62708-336-2
... shapes are designed and extruded for a wide range of programs: Solid sections, bars, and rods extruded from solid billets by direct extrusion (discussed in Chapter 3 ) Tubes and hollow sections extruded from solid billets through porthole or bridge-type dies (for certain alloys) by direct...
Abstract
This chapter discusses the basic differences between direct and indirect extrusion, the application of plastic theory, the significance of strain and strain rate, friction, and pressure, and factors such as alloy flow stress and extrusion ratio, which influence the quality of material exiting the die and the amount of force required.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2000
DOI: 10.31399/asm.tb.aet.t68260213
EISBN: 978-1-62708-336-2
... the need for any corrective work Maximum possible working life Maximum length of the extruded section A high-quality surface finish maintained over many extrusions High extrusion speeds Low manufacturing costs These requirements are usually fulfilled for rods and other simple shapes...
Abstract
This chapter provides guidelines on how to set up and run an effective quality-improvement program for aluminum extrusion operations. It begins by identifying production processes and variables that impact the quality of hard and soft alloy extrusions. It then presents a series of checklists and flowcharts that can be used to monitor and troubleshoot billet-making and extrusion processes, die construction, equipment maintenance, heat treating, and sawing and stretching procedures. It also discusses the importance of charting test results and monitoring surface treatments that may be required to improve corrosion, oxidation, or wear resistance.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2000
DOI: 10.31399/asm.tb.aet.t68260119
EISBN: 978-1-62708-336-2
... of extruded shapes of hard alloys. There are many potential sources of hydrogen in aluminum, such as furnace atmosphere (fuel) charge materials, fluxes, external components, and metal/mold reactions. Dissolved hydrogen can be reduced or removed by proper degassing. There are many ways the degassing could...
Abstract
This chapter describes various aspects of the billet making process and how they affect the quality of aluminum extrusions. It begins with an overview of the direct-chill continuous casting technique and its advantages over other methods, particularly for hard aluminum alloys. It then discusses the influence of casting variables, including pouring temperature and cooling rate, and operating considerations such as the make-up of charge materials, fluxing and degassing procedures, and grain refining. The chapter also provides information on vertical and horizontal casting systems, billet homogenization, and the cause of casting defects, including cracking and splitting, segregation, porosity, and grain growth.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2000
DOI: 10.31399/asm.tb.aet.t68260087
EISBN: 978-1-62708-336-2
... (both die and deep tongues) Optimization of bearing lengths to increase productivity To start with the design of a die, the designer needs fundamental information regarding the geometry of the shape, alloy to be extruded, size of the press, billet size, runout required by the customer, support...
Abstract
This chapter familiarizes readers with the design, configuration, and function of tooling and dies used to extrude aluminum alloys. It discuses basic design considerations, including the geometry, location, and orientation of die openings; allowances for thermal shrinkage, stretching, and deflection; and the length and profile of bearing surfaces. It outlines the steps and processes involved in die making, describes the selection and treatment of die materials, and examines the factors that influence friction and wear. It also discusses the general procedures for on-site die correction.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980009
EISBN: 978-1-62708-342-3
... Abstract The hot-working process extrusion is used to produce semifinished products in the form of bar, strip, and solid sections, as well as tubes and hollow sections. The first part of this chapter describes the composition, properties, and applications of tin and lead extruded products...
Abstract
The hot-working process extrusion is used to produce semifinished products in the form of bar, strip, and solid sections, as well as tubes and hollow sections. The first part of this chapter describes the composition, properties, and applications of tin and lead extruded products with a deformation temperature range of 0 to 300 deg C and magnesium and aluminum extruded products with a working temperature range of 300 to 600 deg C. The second part focuses on copper alloy extruded products, extruded titanium alloy products, and extruded products in iron alloys with a working temperature range of 600 to 1300 deg C.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870001
EISBN: 978-1-62708-299-0
... to the different profiles (shapes) in which the metal can be extruded. The ease and speed with which aluminum can be machined is one of the important factors contributing to the low cost of finished aluminum parts. The metal can be turned, milled, bored, or machined in other manners at the maximum speeds...
Abstract
Aluminum is the second most widely used metal in the world. It is readily available, offers a wide range of properties, and can be shaped, coated, and joined using a variety of methods. This chapter discusses some of the key attributes of wrought and cast aluminum alloys and the classifications, designations, and grades of available product forms. It also explains how aluminum alloys are used in aerospace, automotive, rail, and marine applications as well as in building and construction, electrical products, manufacturing equipment, packaging, and consumer durables such as appliances and furniture.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980195
EISBN: 978-1-62708-342-3
... extrusion billets are normally extruded with the cast skin. Extruded magnesium-base alloys Table 5.2 Extruded magnesium-base alloys Material designation Composition, wt% Billet, °C Shape and condition Properties Symbol No. (DIN standard) ASTM R p0.2 N/mm 2 R m N/mm 2 A S...
Abstract
Compared with other deformation processes used to produce semifinished products, the hot-working extrusion process has the advantage of applying pure compressive forces in all three force directions, enhancing workability. The available variations in the extrusion process enable a wide spectrum of materials to be extruded. This chapter focuses on the processes involved in the extrusion of semifinished products in various metals and their alloys, namely tin, lead, lead-base soft solders, tin-base soft solders, zinc, magnesium, aluminum, copper, titanium, zirconium, iron, nickel, and powder metals. It discusses their properties and applications as well as suitable equipment for extrusion. It further discusses the processes involved in the extrusion of semifinished products in exotic alloys and extrusion of semifinished products from metallic composite materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120295
EISBN: 978-1-62708-269-3
...: bars, extrusions, foils, forgings, plates, shapes, sheets, strips, tubes, and wire. MIL-I-45208A standards Diversified Metals, Inc. 49 Main St., P.O. Box 65 Monson, MA 01057-0065 Tel: 888-618-9779 Fax: 413-267-3151 Titanium rod, bar, wire, sheets, plates, tubing, extruded shapes, forgings...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980001
EISBN: 978-1-62708-342-3
..., in which a billet, usually round, is pressed by a stem at high pressure through a tool of the desired shape, the die, to one or more lengths, first achieved its important position in the semifinished product industry in the twentieth century. The process was used mainly for the production of bar, wire...
Abstract
This chapter provides an overview of the basic principles and historic development of metal extrusion processes. It starts by illustrating the two major process categories: direct extrusion and indirect extrusion. It then briefly defines hydrostatic extrusion and the conform process. The history coverage addresses early patents for extrusion of lead at the turn of the 17th century up through the major process innovations in the 20th century.
Image
Published: 01 March 2000
Fig. 17 Recess in the mandrel of a multihole porthole die. (a) Recess on entry of mandrel. (b) Inside view of the mandrel (right) and cap showing (left) the location of the critical wing of the shape. (c) Recess on top of mandrel. Source: Florida Extruder International, Inc.
More
1