Skip Nav Destination
Close Modal
Search Results for
epoxy resin
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 181 Search Results for
epoxy resin
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 November 2010
Fig. 3.32 HPLC Curve for 3501-6 epoxy resin. DDS, diaminodiphenyl sulfone; TGMDA, tetraglycidyl methylene dianiline. Source: Ref 6
More
Image
Published: 01 November 2010
Image
in Accepted Practice for Metallographic Preparation of Thermal Spray Coating Samples
> Thermal Spray Technology: Accepted Practices
Published: 01 June 2022
Figure 6 Standardized circular epoxy resin mounting moulds; left 30 mm diameter, right 25 mm diameter
More
Image
Published: 01 December 2003
Fig. 3 Typical dynamic mechanical spectrum of high-temperature epoxy-resin system. G ′, shear modulus; G ″, loss modulus
More
Image
Published: 01 December 2003
Fig. 3 Typical dynamic mechanical spectrum of high-temperature epoxy-resin system. G ′, storage modulus. G ″, loss modulus
More
Image
Published: 01 December 2003
Fig. 5 Comparison of water absorption of epoxy-resin systems of differing polarities. TGMDA, tetraglycidyl methylenedianiline
More
Image
Published: 01 November 2010
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780089
EISBN: 978-1-62708-281-5
... technique and its value to the thermoset resin field. Epoxy resins are emphasized in the examples because they dominate the airframe and aerospace industries. The article also provides information on two categories of characterization of the processing behavior of thermoset. The first studies the thermal...
Abstract
This article focuses on characterization techniques used for analyzing the physical behavior and chemical composition of thermoset resins, namely chromatography and infrared spectroscopy. The main purpose is to give sufficient detail to permit the reader understand a particular test technique and its value to the thermoset resin field. Epoxy resins are emphasized in the examples because they dominate the airframe and aerospace industries. The article also provides information on two categories of characterization of the processing behavior of thermoset. The first studies the thermal properties of reactive thermoset systems, while the second utilizes these thermal characteristics as the basis for monitoring and control during processing.
Image
Published: 01 December 2003
Fig. 4 Hackles in the resin of a carbon/epoxy (AS4/3501-6) laminate, indicative of mode II shear failure. 480×
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870063
EISBN: 978-1-62708-314-0
..., epoxy, bismaleimide, cyanate ester, polyimide, and phenolic resins and various toughening methods. The chapter also covers thermoplastic matrix materials and product forms and provides an introduction to the physiochemical tests used to characterize resins and cured laminates. physiochemical test...
Abstract
This chapter discusses the use of thermoset and thermoplastic resins in polymer matrix composites. It begins by explaining how the two classes of polymer differ and how it impacts their use as matrix materials. It then goes on to describe the characteristics of polyester, vinyl ester, epoxy, bismaleimide, cyanate ester, polyimide, and phenolic resins and various toughening methods. The chapter also covers thermoplastic matrix materials and product forms and provides an introduction to the physiochemical tests used to characterize resins and cured laminates.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860149
EISBN: 978-1-62708-338-6
... Poly(p-phenylene-2,6-benzobisoxazole), high-performance fibers Toyobo Resin designations Table A1.2 Resin designations Resin designation Type Supplier 3501 Epoxy prepreg, 350 °F cure Hexcel Aerospace LY564 Epoxy Araldit/Huntsman 1902 Epoxy prepreg, 250 °F cure...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780314
EISBN: 978-1-62708-281-5
... to give measurable T g s for resins having a very high cross-link density, in particular, some of the aerospace epoxy resins. Differential scanning calorimetry comparison of glass transition temperature (<italic>T</italic><sub>g</sub>) results from sealed and unsealed pans Table 3 Differential...
Abstract
This article describes the mechanisms of moisture-induced damage in polymeric materials, covering the characteristics of important structural plastics; the effects of moisture on glass transition temperature, modulus, creep, and stress relaxation of plastic materials; and moisture-induced fatigue failure in composites. The effect of moisture on the mechanical properties of thermoset resins and thermoplastics are also discussed.
Image
Published: 01 December 2003
Fig. 6 Flexural creep compliance of parallel glass-fiber-reinforced aromatic-amine-cured epoxy resin (EPON Resin 826). t , time; a T , amount of curve shift
More
Image
Published: 01 November 2010
Fig. 4.9 Photograph of the titanium fastener/composite lap joint specimen mounted in Rhodamine-B-dyed epoxy resin. The mount is numbered on the sides for documentation.
More
Image
Published: 01 November 2010
Fig. 2.6 Cut edge of a composite material after sectioning with an abrasive cut-off saw. The composite was mounted using a Rhodamine-B-dyed epoxy resin and viewed using epi-fluorescence, 390–440 nm excitation, 25× objective.
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030001
EISBN: 978-1-62708-349-2
... Fig. 1.1 Composite cross sections. (a) Sheet molding compound made from carbon-black-filled epoxy resin and chopped glass fiber. Bright-field illumination, 65 mm macrophotograph montage. (b) Quasi-isotropic unidirectional prepreg laminate. Slightly uncrossed polarized light, 5× objective...
Abstract
This chapter provides a general description of materials and methods for manufacturing high-performance composites. The materials covered are polymer matrices and prepreg materials and the methods include infusion processes, composite-toughening methods, matrix-toughening methods, and dispersed-phase toughening. In addition, the chapter provides information on interlayer-toughened composites and honeycomb or foam structure composite materials. It also discusses the processes in optical microscopy of composite materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030147
EISBN: 978-1-62708-349-2
... A.C. and Springer G.S. , Curing of Epoxy Matrix Composites , J. Compos. Mater. , March 17, 1983 , p 135 – 169 10.1177/002199838301700204 5. Kardos J.L. , Dudukovic M.P. , and Dave R. , Void Growth and Resin Transport during Processing of Thermosetting-Matrix...
Abstract
Achieving the best-performing composite part requires that the processing method and cure cycle create high-quality, low-void-content structures. If voids are present, the performance of the composite will be significantly reduced. There are multiple causes of voids in composite materials; they are generally categorized as voids that are due to volatiles (such as solvents, water) or voids that result from entrapped air. This chapter describes the analysis of various types of voids. It reviews techniques for analysis of voids at ply-drops, voids due to high fiber packing, and voids that occur in honeycomb core composites. The final section of the chapter discusses void documentation through the use of nondestructive inspection techniques and density/specific gravity measurement methods.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.9781627083492
EISBN: 978-1-62708-349-2
Image
in Introduction—Composite Materials and Optical Microscopy
> Optical Microscopy of Fiber-Reinforced Composites
Published: 01 November 2010
Fig. 1.1 Composite cross sections. (a) Sheet molding compound made from carbon-black-filled epoxy resin and chopped glass fiber. Bright-field illumination, 65 mm macrophotograph montage. (b) Quasi-isotropic unidirectional prepreg laminate. Slightly uncrossed polarized light, 5× objective
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860413
EISBN: 978-1-62708-348-5
... fabric, fine weave, phenolic resin NEMA/ASTM C MIL-P-15035, type FBM Cellulose fabric, medium weave, phenolic resin NEMA/ASTM G-5 — Glass fabric, melamine resin NEMA/ASTM G-10 MIL-P-18177, type GEE Glass fabric, epoxy resin NEMA/ASTM G-11 MIL-P-18177, type GEB Glass fabric, high...
Abstract
Composite systems for cryogenic applications are discussed in this chapter. This chapter emphasizes filamentary-reinforced composites because they are the most widely used composite materials. It begins with a discussion on the approach to designing and fabricating with low-pressure laminate composites. This is followed by a section providing an overview of the materials in modern cryogenic technology. Then, the chapter describes the effect of cryogenic temperatures on materials properties; it also introduces the various joining techniques developed for composite materials. The effects of radiation on the properties of the materials are covered as well as the processes involved in testing laminates at cryogenic temperatures. Finally, the chapter provides information available on concrete aggregate composites.
1