1-20 of 789

Search Results for engineering plastics

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780003
EISBN: 978-1-62708-281-5
... Abstract This introductory article describes the various aspects of chemical structure and composition that are important to an understanding of polymer properties and their eventual effect on the end-use performance of engineering plastics, namely thermoplastics and thermosets. The most...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780028
EISBN: 978-1-62708-281-5
... of engineering plastics and commodity plastics follows, and the final section briefly outlines the most common plastics manufacturing processes. thermal properties mechanical properties physical properties engineering plastics commodity plastics chemical composition manufacturing process molecular...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550325
EISBN: 978-1-62708-307-2
... Abstract This chapter describes the molecular structures and chemical reactions associated with the production of thermoset and thermoplastic components. It compares and contrasts the mechanical properties of engineering plastics with those of metals, and explains how fillers and reinforcements...
Image
Published: 01 December 2003
Fig. 9 Compressive strength of engineering plastics. PA, polyamide; PET, polyethylene terephthalate; PBT, polybutylene terephthalate; PPO, polyphenylene oxide; PC, polycarbonate; ABS, acrylonitrile-butadiene-styrene More
Image
Published: 01 December 2003
Fig. 12 Flexural modulus retention of engineering plastics at elevated temperatures. PET, polyethylene terephthalate; PBT, polybutylene terephthalate; ABS, acrylonitrile-butadiene-styrene; PA, polyamide; PSU, polysulfone More
Image
Published: 01 December 2003
Fig. 20 Rockwell hardness of engineering plastics. PET, polyethylene terephthalate; PA, polyamide; PPO, polyphenylene oxide; PBT, polybutylene terephthalate; PC, polycarbonate; ABS, acrylonitrile-butadiene-styrene More
Image
Published: 01 December 2003
Fig. 1(a) Structures of selected commodity and engineering plastics. Source: Ref 1 – 6 More
Image
Published: 01 December 2003
Fig. 1(b) Structures of selected commodity and engineering plastics. Source: Ref 1 – 6 More
Image
Published: 01 December 2003
Fig. 1(c) Structures of selected commodity and engineering plastics. Source: Ref 1 – 6 More
Image
Published: 01 October 2012
Fig. 7.8 Typical stress-strain curve for an engineering plastic. Note that there is no true proportional limit. Source: Ref 7.4 More
Image
Published: 01 September 2005
Fig. 2 Typical stress-strain curve for an engineering plastic. Note that there is no true proportional limit. More
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780343
EISBN: 978-1-62708-281-5
... pertinent to structure analysis. This is followed by a review of the characterization of plastics by infrared and nuclear magnetic resonance spectroscopy. The article then provides information on the distribution of molecular weight of an engineering plastic. It further discusses the methods used in thermal...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780329
EISBN: 978-1-62708-281-5
... Abstract This article provides a basic review of polymer photochemistry as it relates to the weatherability of engineering plastics, considering the chemistry induced by exposure to sunlight in open air. Elementary aspects of weatherability chemistry that are discussed include the light...
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300301
EISBN: 978-1-62708-323-2
... Abstract This chapter covers the friction and wear behaviors of plastics and elastomers. It begins by describing the molecular differences between the two types of polymers and their typical uses. It then discusses the important attributes of engineering plastics and their suitability...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780115
EISBN: 978-1-62708-281-5
... Abstract This article covers the thermal analysis and thermal properties of engineering plastics with respect to chemical composition, chain configuration, and/or conformation of the base polymers. The thermal analysis techniques covered are differential scanning calorimetry, thermogravimetric...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550001
EISBN: 978-1-62708-307-2
... Abstract Engineers have many materials to choose from when dealing with weight-related design constraints. The list includes aluminum, beryllium, magnesium, and titanium alloys as well as engineering plastics, structural ceramics, and polymer-, metal-, and ceramic-matrix composites...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780238
EISBN: 978-1-62708-281-5
... Abstract This article reviews fatigue test methodologies, provides an overview of general fatigue behavior (crack initiation and propagation) in engineering plastics, and discusses some of the factors affecting the fatigue performance of polymers. In addition, it provides information...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540297
EISBN: 978-1-62708-309-6
... they compare with metals. It begins by describing the fracture characteristics of ceramics and glasses along with typical properties and subcritical crack growth mechanisms. It then discusses the properties of engineering plastics and the factors affecting crack formation and growth, fracture toughness...
Image
Published: 01 December 2003
Fig. 4 Thermal analysis of Society of Plastics Engineers (SPE) reference plastics. Identification numbers are tied to SPE resin kit (see Table 6 ) More
Image
Published: 01 December 2003
Fig. 27 Thermal analysis of Society of Plastics Engineers (SPE) reference plastics. Identification numbers tied to SPE resin kit (see Table 4 ); r2 = 0.95 More