Skip Nav Destination
Close Modal
Search Results for
engineering ceramics
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 399 Search Results for
engineering ceramics
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870325
EISBN: 978-1-62708-344-7
... there to discuss the fatigue behavior of bone and how it compares to stable and cyclically softening metals. It also discusses the fatigue characteristics of engineered and composited ceramics and ceramic fiber-reinforced metal-matrix composites. References References 12.1 Ashby M.F. and Jones...
Abstract
This chapter discusses the effect of fatigue on polymers, ceramics, composites, and bone. It begins with a general comparison of polymers and metals, noting important differences in microstructure and cyclic loading response. It then presents the results of several studies that shed light on the fatigue behavior and crack growth mechanisms of common structural polymers and moves on from there to discuss the fatigue behavior of bone and how it compares to stable and cyclically softening metals. It also discusses the fatigue characteristics of engineered and composited ceramics and ceramic fiber-reinforced metal-matrix composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540297
EISBN: 978-1-62708-309-6
... they compare with metals. It begins by describing the fracture characteristics of ceramics and glasses along with typical properties and subcritical crack growth mechanisms. It then discusses the properties of engineering plastics and the factors affecting crack formation and growth, fracture toughness...
Abstract
Structural and fracture mechanics-based tools for metals are believed to be applicable to nonmetals, as long as they are homogeneous and isotropic. This chapter discusses the essential aspects of the fatigue and fracture behaviors of nonmetallic materials with an emphasis on how they compare with metals. It begins by describing the fracture characteristics of ceramics and glasses along with typical properties and subcritical crack growth mechanisms. It then discusses the properties of engineering plastics and the factors affecting crack formation and growth, fracture toughness, fatigue life, and stress rupture failures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610327
EISBN: 978-1-62708-303-4
... nonmetallic materials that consist of metallic and nonmetallic elements bonded together with either ionic and/or covalent bonds. Although ceramics can be crystalline or noncrystalline, the important engineering ceramics are all crystalline. Due to the absence of conduction electrons, ceramics are usually good...
Abstract
This chapter covers the fatigue and fracture behaviors of ceramics and polymers. It discusses the benefits of transformation toughening, the use of ceramic-matrix composites, fracture mechanisms, and the relationship between fatigue and subcritical crack growth. In regard to polymers, it covers general characteristics, viscoelastic properties, and static strength. It also discusses fatigue life, impact strength, fracture toughness, and stress-rupture behaviors as well as environmental effects such as plasticization, solvation, swelling, stress cracking, degradation, and surface embrittlement.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550001
EISBN: 978-1-62708-307-2
... Abstract Engineers have many materials to choose from when dealing with weight-related design constraints. The list includes aluminum, beryllium, magnesium, and titanium alloys as well as engineering plastics, structural ceramics, and polymer-, metal-, and ceramic-matrix composites...
Abstract
Engineers have many materials to choose from when dealing with weight-related design constraints. The list includes aluminum, beryllium, magnesium, and titanium alloys as well as engineering plastics, structural ceramics, and polymer-, metal-, and ceramic-matrix composites. This chapter provides a brief overview of these lightweight materials, discussing their primary advantages along with their properties, behaviors, and limitations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550511
EISBN: 978-1-62708-307-2
... CERAMICS ARE INORGANIC NONMETALLIC MATERIALS that consist of metallic and nonmetallic elements bonded together with either ionic and/or covalent bonds. Although ceramics can be crystalline or noncrystalline, the important engineering ceramics are all crystalline. Due to the absence of conduction electrons...
Abstract
Ceramics normally have high melting temperatures, excellent chemical stability and, due to the absence of conduction electrons, tend to be good electrical and thermal insulators. They are also inherently hard and brittle, and when loaded in tension, have almost no tolerance for flaws. This chapter describes the applications, properties, and behaviors of some of the more widely used structural ceramics, including alumina, aluminum titanate, silicon carbide, silicon nitride, zirconia, zirconia-toughened alumina (ZTA), magnesia-partially stabilized zirconia (Mg-PSZ), and yttria-tetragonal zirconia polycrystalline (Y-TZP). It also provides information on materials selection, design optimization, and joining methods, and covers every step of the ceramic production process.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060239
EISBN: 978-1-62708-355-3
... is summarized for three principal groups of engineering materials: metals, ceramics, and polymers (including fiber-reinforced polymers). The chapter describes the factors that influence the selection of tensile testing procedures for low-temperature evaluation, along with a comparison of tensile and compression...
Abstract
This chapter details low-temperature test procedures and equipment. It discusses the role temperature plays in the properties of typical engineering materials. The effect that lowering the temperature of a solid has on the mechanical properties of a material is summarized for three principal groups of engineering materials: metals, ceramics, and polymers (including fiber-reinforced polymers). The chapter describes the factors that influence the selection of tensile testing procedures for low-temperature evaluation, along with a comparison of tensile and compression tests. It covers the parameters and standards related to low-temperature tensile testing. The chapter discusses the factors involved in controlling test temperature. Finally, the chapter discusses the safety issues concerning the use of cooled methanol, liquid-nitrogen, and liquid helium.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350183
EISBN: 978-1-62708-315-7
... Abstract This chapter compares and contrasts surface-engineering processes based on process availability, corrosion and wear performance, distortion effects, penetration depth or attainable coating thickness, and cost. It provides both quantitative and qualitative information as well...
Abstract
This chapter compares and contrasts surface-engineering processes based on process availability, corrosion and wear performance, distortion effects, penetration depth or attainable coating thickness, and cost. It provides both quantitative and qualitative information as well as measured property values.
Image
Published: 01 December 2000
Fig. 7.2 Prealloyed powder aerospace parts. (a) F-14 fuselage brace. (b) Engine mount support fitting for the F-18 aircraft. (c) Cruise missile engine impeller. (d) Four section welded nacelle frame structure. (e) Titanium aluminide demonstration impeller. Parts were produced by the crucible
More
Book Chapter
Book: Principles of Brazing
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230221
EISBN: 978-1-62708-351-5
... of Interfaces , Pask J.A. , and Evans A.G. , Ed., Plenum Press • Morrell R. , 1985 . Handbook of Properties of Technical and Engineering Ceramics , Her Majesty’s Stationary Office • Mutoh Y. et al. 1993 . Strength and Fracture Toughness of Si 3 N 4 -Metal Joints...
Abstract
This chapter discusses the processes involved in the wetting, spreading, and chemical interaction of a braze on a nonmetal. The chapter reviews the key materials and process issues relating to the joining of nonmetals using active brazing. Emphasis is placed on the differences in brazing to metals by established methods. The chapter also describes the designing process and properties of metal/nonmetal joints.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350125
EISBN: 978-1-62708-315-7
... Abstract This chapter discusses the use of coating methods and materials and their impact on corrosion and wear behaviors. It provides detailed engineering information on a wide range of processes, including organic, ceramic, and hot dip coating, metal plating and cladding, and the use of weld...
Abstract
This chapter discusses the use of coating methods and materials and their impact on corrosion and wear behaviors. It provides detailed engineering information on a wide range of processes, including organic, ceramic, and hot dip coating, metal plating and cladding, and the use of weld overlays, thermal spraying, and various deposition technologies.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550621
EISBN: 978-1-62708-307-2
... materials testing program. Fig. 12.1 Strength, σ f , plotted against density, ρ, for various engineering materials. Strength is yield strength for metals and polymers, compressive strength for ceramics, tear strength for elastomers, and tensile strength for composites. Source: Ref 12.2...
Abstract
This chapter consists of three parts. The first part provides data and guidelines for selecting materials and processing routes. It compares the basic properties of metals, ceramics, and polymers, identifies important measures of performance, and discusses manufacturing processes and their compatibility with specific materials. The chapter then presents general guidelines for selecting lightweight materials, and concludes with a review of lightweight metals, plastics, and composites used in automotive applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280079
EISBN: 978-1-62708-267-9
... or a protective atmosphere prior to casting. The Basics. There are two distinct processes for making investment casting molds: the solid investment (solid mold) process and the ceramic shell process. The ceramic shell process has become the predominant technique for engineering applications, displacing the solid...
Abstract
This chapter discusses the application of investment casting to nickel- and cobalt-base superalloys. It describes the production of polycrystalline and single crystal castings, the materials normally used, and the part dimensions and tolerances typically achieved. It explains how patterns, molds, and shells are produced, discusses the practice of directional solidification, and examines an assortment of turbine components cast from nickel- and cobalt-base alloys. The chapter also addresses casting problems such as inclusions, porosity, distortion, core shift, and leaching and explains how to avoid them.
Image
Published: 01 October 2012
Fig. 11.16 Fastrac rocket engine showing the location of the turbopump that contains the continuous fiber ceramic composite blisk shown in Fig. 11.17 . Source: Ref 11.3
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060163
EISBN: 978-1-62708-355-3
... 1. Varner J.R. , Descriptive Fractography , Ceramics and Glasses , Vol 4 , Engineered Materials Handbook , ASM International , 1991 , p 635 – 644 . 2. Rice R.W. , Ceramic Fracture Features, Observations, Mechanisms and Uses , Fractography of Ceramic and Metal Failures...
Abstract
This chapter describes tensile testing of advanced ceramic materials, a category that includes both noncomposite, or monolithic, ceramics and ceramic-matrix composites (CMCs). The chapter presents four key considerations that must be considered when carrying out tensile tests on advanced monolithic ceramics and CMCs. These include effects of flaw type and location on tensile tests, separation of flaw populations, design strength and scale effects, and lifetime predictions and environmental effects. The chapter discusses the advantages, problems, and complications of four basic categories of tensile testing techniques as applied to ceramics and CMCs. These categories are true direct uniaxial tensile tests at ambient temperatures, indirect tensile tests, tests where failure is presumed to result from tensile stresses, and high-temperature tensile tests.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350195
EISBN: 978-1-62708-315-7
... Cams and tappets, cylinders and pistons, even when lubricated, can be prone to scuffing. Options include: Hard chrome plate for moderate-speed cylinder bores Electrolytic nickel/ceramic composite for cylinder bores in high-revving engines Nitrocarburizing for tappets and cams made from...
Abstract
This chapter provides helpful guidelines for selecting a surface treatment for a given application. It identifies important design factors and applicable treatments for common design scenarios, materials, and operating conditions. It explains why heat treatments and finishing operations may be required before or after processing and how to estimate or predict coating thickness, case depth, hardness, and the likelihood of distortion. It also addresses related issues and considerations such as part handling and fixturing, surface preparation and cleaning requirements, processability, aesthetics, and the influence of design features.
Image
Published: 01 October 2012
Fig. 12.1 Strength, σ f , plotted against density, ρ, for various engineering materials. Strength is yield strength for metals and polymers, compressive strength for ceramics, tear strength for elastomers, and tensile strength for composites. Source: Ref 12.2
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870001
EISBN: 978-1-62708-344-7
.... While most of the content of the book is directed to the application of metals in engineering structures, modern technology has created new materials and used them in special applications. Polymers, ceramics, and composites combining metals with nonmetals have come into common use for applications...
Abstract
This chapter gives a brief overview of the role of fatigue in component failures. It presents examples of fatigue failures along with statistics on the causes and costs of fatigue damage in various industries. It also includes a chapter-by-chapter summary of the content in the book, noting that the book deals primarily with fatigue at temperatures below the creep range with high-temperature fatigue being treated in a companion publication.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.t56040010
EISBN: 978-1-62708-428-4
... Introduction Thermal spray is a versatile, adaptable, potentially cost-effective technology in which a wide range of metals, ceramics, polymers, and composites can be applied to almost any metal to protect against wear, corrosion, abrasion, high temperature, chemicals, and erosion. It can also rebuild...
Abstract
This article provides a brief description of commercially important thermal spray processes and gives examples of applications and application requirements. The processes covered are flame, wire arc, plasma, high-velocity oxyfuel processes, detonation gun, and cold spray methods. Examples are provided of the applications in aerospace, automotive, and medical device industries as well as the use of thermal spray as an additive manufacturing technique.
Image
Published: 01 December 2004
Fig. 2 Strength, σ f , plotted against density, ρ, for various engineered materials. Strength is yield strength for metals and polymers, compressive strength for ceramics, tear strength for elastomers, and tensile strength for composites. Superimposing a line of constant σ f /ρ enables
More
Image
Published: 01 October 2012
Fig. 11.18 Exhaust nozzle of an F414 engine on an F-18 E/F aircraft, showing the twelve sets of ceramic-matrix composite (CMC) flaps and seals. The white areas on the seals are a zirconia overcoat for mechanical fasteners. Over an order of magnitude increase in life has been obtained
More
1