Skip Nav Destination
Close Modal
Search Results for
electronic ceramics
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 309 Search Results for
electronic ceramics
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550511
EISBN: 978-1-62708-307-2
... Abstract Ceramics normally have high melting temperatures, excellent chemical stability and, due to the absence of conduction electrons, tend to be good electrical and thermal insulators. They are also inherently hard and brittle, and when loaded in tension, have almost no tolerance for flaws...
Abstract
Ceramics normally have high melting temperatures, excellent chemical stability and, due to the absence of conduction electrons, tend to be good electrical and thermal insulators. They are also inherently hard and brittle, and when loaded in tension, have almost no tolerance for flaws. This chapter describes the applications, properties, and behaviors of some of the more widely used structural ceramics, including alumina, aluminum titanate, silicon carbide, silicon nitride, zirconia, zirconia-toughened alumina (ZTA), magnesia-partially stabilized zirconia (Mg-PSZ), and yttria-tetragonal zirconia polycrystalline (Y-TZP). It also provides information on materials selection, design optimization, and joining methods, and covers every step of the ceramic production process.
Image
Published: 01 June 2016
Fig. 5.15 (a) Focused ion beam/scanning electron microscopy image of aluminum particle dissected using Ga + ions. (b, c) Secondary electron micrographs of aluminum particles adhering to ceramic (lead-zirconium titanate) surface. Source: Ref 5.39
More
Image
Published: 01 October 2012
Fig. 11.23 Scanning electron micrograph of a hybrid composite consisting of SiC fibers (Nicalon) and whiskers in a glass-ceramic matrix. Source: Ref 11.11
More
Image
Published: 01 March 2001
Fig. 4 Scanning electron micrograph showing surface damage by chip formation, plastic deformation, and pickup of fragments of a ceramic particle abrading a copper surface
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110587
EISBN: 978-1-62708-247-1
... Abstract Passive components can be broadly divided into capacitors, resistors, and inductors. Failure analysis of these components helps determine the root cause and improve the overall quality and reliability of the electronic systems. This article describes different failure analysis...
Abstract
Passive components can be broadly divided into capacitors, resistors, and inductors. Failure analysis of these components helps determine the root cause and improve the overall quality and reliability of the electronic systems. This article describes different failure analysis approaches used for these components. It discusses different types of capacitors along with their constructions and failure modes. The types include tantalum, aluminum electrolytic, multi-layered ceramics, film, and super capacitors. The article then provides a discussion on the two common types of inductors, namely, common mode choke coil and surface mount powder choke coil.
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780109
EISBN: 978-1-62708-268-6
... is that the system failed even though all parts in the system met their drawing requirements. The common failures discussed in this chapter include those associated with metallic components, composite materials, plastic components, ceramic components, and electrical and electronic components. ceramic...
Abstract
This chapter focuses on common failure characteristics exhibited by mechanical and electrical components. The topic is considered from two perspectives: one possibility is that the system failed because parts were nonconforming to drawing requirements and another possibility is that the system failed even though all parts in the system met their drawing requirements. The common failures discussed in this chapter include those associated with metallic components, composite materials, plastic components, ceramic components, and electrical and electronic components.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610327
EISBN: 978-1-62708-303-4
... nonmetallic materials that consist of metallic and nonmetallic elements bonded together with either ionic and/or covalent bonds. Although ceramics can be crystalline or noncrystalline, the important engineering ceramics are all crystalline. Due to the absence of conduction electrons, ceramics are usually good...
Abstract
This chapter covers the fatigue and fracture behaviors of ceramics and polymers. It discusses the benefits of transformation toughening, the use of ceramic-matrix composites, fracture mechanisms, and the relationship between fatigue and subcritical crack growth. In regard to polymers, it covers general characteristics, viscoelastic properties, and static strength. It also discusses fatigue life, impact strength, fracture toughness, and stress-rupture behaviors as well as environmental effects such as plasticization, solvation, swelling, stress cracking, degradation, and surface embrittlement.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270072
EISBN: 978-1-62708-301-0
... bearing housing of an aircraft failed, with the fracture occurring in the hub. It was a fatigue failure. At the time of the last servicing, when ceramic disc and friction plates were changed, there was no indication of cracking. There was heavy rubbing on the inside of the hub, possibly due to improper...
Abstract
This chapter documents the key findings of an investigation into the failure of an aircraft’s main wheel bearing housing. Using annotated images and a detailed SEM fractograph, it shows what investigators observed that led them to conclude that the flange on one of the hubs broke off due to a combination of fatigue, bending stresses, and wear. It also includes a recommendation to assess the structural integrity of the bearing housing after every 100 h of service using nondestructive techniques.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.tm.t52320001
EISBN: 978-1-62708-357-7
... polymers and ceramics, and establishment and development of materials science. ceramics metallography microstructure steel synthetic polymers 1.1 Matter and Materials “What are materials?” To address this question, let us first consider the difference between materials and matter...
Abstract
This chapter explains the distinction between materials and matter through the concept of microstructure. It presents the history of matter science and the establishment of metallography. The chapter provides an overview of the progress of steel technology, progress in synthetic polymers and ceramics, and establishment and development of materials science.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270025
EISBN: 978-1-62708-301-0
.... , SEM/TEM Fractography Handbook , Metals and Ceramics Information Center, Battelle Columbus Laboratories , Columbus , 1975 6. Phillips A. , Kerlins V. , Rawe R.A. , and Whiteson B.V. , Electron Fractography Handbook , Metals and Ceramics Information Center, Battelle...
Abstract
This chapter provides an overview of the tools and techniques used to examine failure specimens and the wealth of information that can be obtained from fracture surfaces, cracks, wear patterns, and other such features. It discusses the use of metallography, fractography, and optical and electron microscopy. It presents a number of images recorded using these methods and explains what they reveal about the mode of fracture and the state of the component prior to failure.
Image
Published: 30 April 2020
Powder Industries Federation. (f) Hollow decorative ceramic figurine fabricated using slip casting. (g) Electronic iron aluminide foils fabricated by powder rolling. Courtesy of Altria Group. (h) Automotive spark plugs incorporate an alumina (white) insulator fabricated by cold isostatic pressing. (i
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290067
EISBN: 978-1-62708-319-5
... few options. The search for better binders turned to epoxy resins that provided good green strength once cured but were difficult to remove without carbon contamination. Subsequently, applications in batteries, electronic ceramics, and aerospace devices built on these ideas, using synthetic polymers...
Abstract
This chapter provides details on several specific binder formulations and a discussion of basic binder design concepts. The focus is on customization of the feedstock response to heating, pressurization, or solvent exposure for a specific shaping process. The discussion starts with the requirements of a binder system, the historical progression of binder formulations, and the use of binder alternatives to adapt to specific applications. The importance of binder handling strength to shape preservation is emphasized. The chapter provides information on the binders used for room-temperature shaping, namely slurry and tape casting systems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240003
EISBN: 978-1-62708-251-8
... is the number of valence electrons in the given element. High hardness and low electrical conductivity are general characteristics of solids of this type. In covalently bonded ceramics, the bonding between atoms is specific and directional, involving the exchange of electron charge between pairs of atoms. Thus...
Abstract
Bonding in solids may be classified as either primary or secondary bonding. Methods of primary bonding include the metallic, ionic, and covalent bonds. This chapter discusses and provides a comparison of the properties of these bonds. This is followed by a discussion on crystalline structure, providing information on space lattices and crystal systems, hexagonal close-packed systems, and face-centered and body-centered cubic systems. The chapter then covers slip systems and closes with a brief section on allotropic transformations that occur at a constant temperature during either heating or cooling.
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780193
EISBN: 978-1-62708-268-6
..., scanning electron microscopy, along with EDAX, spectrometry, chromatography (depending on material type) Interference Dimensional inspection, tolerance analysis, visual examination, microscopic examination Wear Dimensional inspection, tolerance analysis, visual examination, microscopic examination...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290251
EISBN: 978-1-62708-319-5
... involving plastics, emulsions, ceramics, and porous structures and foams. Improvements in the design processes have led to the development of functional structures, controlled porosity, and bioinspired structures. binder jetting bound-metal deposition fused-filament fabrication plastics emulsions...
Abstract
This chapter is intended to identify materials, processes, and designs that will lead to great advances in powder-binder forming technologies. It discusses some of the structures obtained through these advances in powder-binder technologies such as binder jetting and extrusion-based additive manufacturing, including bound-metal deposition and fused-filament fabrication: oxidation-resistant high-temperature alloys, anisotropic structures, submicrometer-scale structures, surface hard materials, and artist metallic clays. Some of the advances discussed include the developments in process involving plastics, emulsions, ceramics, and porous structures and foams. Improvements in the design processes have led to the development of functional structures, controlled porosity, and bioinspired structures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290001
EISBN: 978-1-62708-319-5
...) Hollow decorative ceramic figurine fabricated using slip casting. (g) Electronic iron aluminide foils fabricated by powder rolling. Courtesy of Altria Group. (h) Automotive spark plugs incorporate an alumina (white) insulator fabricated by cold isostatic pressing. (i) Steel compressor blade fabricated...
Abstract
This chapter provides an introduction to powder processing of binders and polymers. It sets the context for the remainder of the book by providing an overview of the topics discussed in the subsequent chapters and by providing introduction to powder-binder fabrication and customization of feedstock and describing the challenges in component production. The chapter also summarizes alphabetically a few key concepts in powder-binder processing.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.tm.9781627083577
EISBN: 978-1-62708-357-7
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060163
EISBN: 978-1-62708-355-3
... Fig. 1 Specimen configurations for direct tensile testing of advanced ceramics. (a) Flat plate or “dog-bone” direct tensile specimen with large ends for gripping and reduced gage section. (b) Cylindrical tensile specimen with straight ends for collet grips and reduced gage section. Tapers...
Abstract
This chapter describes tensile testing of advanced ceramic materials, a category that includes both noncomposite, or monolithic, ceramics and ceramic-matrix composites (CMCs). The chapter presents four key considerations that must be considered when carrying out tensile tests on advanced monolithic ceramics and CMCs. These include effects of flaw type and location on tensile tests, separation of flaw populations, design strength and scale effects, and lifetime predictions and environmental effects. The chapter discusses the advantages, problems, and complications of four basic categories of tensile testing techniques as applied to ceramics and CMCs. These categories are true direct uniaxial tensile tests at ambient temperatures, indirect tensile tests, tests where failure is presumed to result from tensile stresses, and high-temperature tensile tests.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540297
EISBN: 978-1-62708-309-6
... have a periodic crystal structure, whereas glasses possess a short-range order structure. What distinguishes metallics and nonmetallics are their bonding forces. Metallic elements release electrons to develop metallic bonding, whereas nonmetallics (ceramics and polymers) share electrons to develop...
Abstract
Structural and fracture mechanics-based tools for metals are believed to be applicable to nonmetals, as long as they are homogeneous and isotropic. This chapter discusses the essential aspects of the fatigue and fracture behaviors of nonmetallic materials with an emphasis on how they compare with metals. It begins by describing the fracture characteristics of ceramics and glasses along with typical properties and subcritical crack growth mechanisms. It then discusses the properties of engineering plastics and the factors affecting crack formation and growth, fracture toughness, fatigue life, and stress rupture failures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940001
EISBN: 978-1-62708-302-7
... and electrons moving in the oxide which acts as the electrolyte supporting the electrochemical mechanism. Polymeric and ceramic materials generally do not support electron conduction and hence corrode by either direct chemical or physical mechanisms. Chemical attack of polymers breaks bonds responsible...
Abstract
This chapter familiarizes readers with the basic concepts of corrosion, discussing chemical reactions, ion transfer mechanisms, electrochemical processes and variables, and the formation of solid corrosion products. It presents a simple but effective teaching tool, the elementary electrochemical corrosion circuit, using it to explain how electric potential differences drive the corrosion process and how corrosion rates vary in proportion to current density. The chapter concludes with a discussion on the importance of corrosion products, such as oxides and hydroxides, and how their formation can be a major factor in controlling corrosion.
1