Skip Nav Destination
Close Modal
Search Results for
electron probe microanalyzers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-17 of 17 Search Results for
electron probe microanalyzers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
in The Expanded Metallographic Laboratory
> Metallographer’s Guide: Practices and Procedures for Irons and Steels
Published: 01 March 2002
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400149
EISBN: 978-1-62708-258-7
... equipment. This chapter describes how these instruments can be used to gather important information about a microstructure. The instruments covered include image analyzers, transmission electron microscopes, scanning electron microscopes, electron probe microanalyzers, scanning transmission electron...
Abstract
Several specialized instruments are available for the metallographer to use as tools to gather key information on the characteristics of the microstructure being analyzed. These include microscopes that use electrons as a source of illumination instead of light and x-ray diffraction equipment. This chapter describes how these instruments can be used to gather important information about a microstructure. The instruments covered include image analyzers, transmission electron microscopes, scanning electron microscopes, electron probe microanalyzers, scanning transmission electron microscopes, x-ray diffractometers, microhardness testers, and hot microhardness testers. A list of other instruments that are usually located in a research laboratory or specialized testing laboratory is also provided.
Image
in The Expanded Metallographic Laboratory
> Metallographer’s Guide: Practices and Procedures for Irons and Steels
Published: 01 March 2002
Fig. 6.27 Preparing a specimen from an AISI/SAE 1335 steel bar for compositional analysis on the electron probe microanalyzer. (a) Vickers microhardness indentations used to mark the location of ferrite banding and (b) the same location with the etch removed by light polishing. 4% picral etch
More
Image
Published: 01 August 1999
Fig. 6.14 (Part 2) (g) 0.4% C (0.45C-0.7Si-0.5Mn-1.2Cr, wt%). As cast. 180 HV. Picral. 50×. (h) 0.4% C (0.45C-0.7Si-0.5Mn-1.2Cr, wt%). As cast. 180 HV. Picral. 250×. (i) Electron probe microanalyzer line scans along line A-B in the section shown in the inset. Average composition: 0.20C
More
Image
Published: 01 August 1999
. 115 HV. Picral. 250×. (g) 0.4% C (0.45C-0.7Si-0.5Mn-1.2Cr, wt%). As cast. 180 HV. Picral. 50×. (h) 0.4% C (0.45C-0.7Si-0.5Mn-1.2Cr, wt%). As cast. 180 HV. Picral. 250×. (i) Electron probe microanalyzer line scans along line A-B in the section shown in the inset. Average composition: 0.20C-0.32Si
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410001
EISBN: 978-1-62708-265-5
... Spectroscopy (EDS). In Electron Probe Microanalyzers the spectra are resolved with better resolution by diffraction of the characteristic Xrays from single crystals in a process referred to as Wavelength Dispersive Spectroscopy (WDS) ( Ref 1.3 ). Auger Electron Spectroscopy The X-ray spectra generated...
Abstract
This chapter provides perspective on the physical dimensions associated with the microstructure of steel and the instruments that reveal grain size, morphology, phase distributions, crystal defects, and chemical composition, from which properties and behaviors derive. The chapter also reviews the definitions and classifications used to identify and differentiate commercial steels, including the AISI/SAE and UNS designation systems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780383
EISBN: 978-1-62708-281-5
... microscope is extremely useful, however, because when equipped with secondary electron and x-ray detectors, it becomes a SEM, an electron probe microanalyzer, a scanning Auger microscope, and a scanning electron loss microscope. Comparison summary of scanning electron beam instruments equipped...
Abstract
This article covers common techniques for surface characterization, including the modern scanning electron microscopy and methods for the chemical characterization of surfaces by Auger electron spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry. The principles of surface analysis and some of the applications of the technique in polymer failure studies are also provided.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.lmcs.t66560125
EISBN: 978-1-62708-291-4
... parallel lamellar arrangement. Fig. 6.6 (Part 1) Pearlite structure in 0.8% C alloy. (a) to (c) 0.81 C-0.08Si-0.65Mn. Austenitized at 860 °C, cooled at 100 °C/h. 240 HV. (a) Picral. 500×. (b) 1% nital. 1000×. (c) Picral. 1000×. (d) Electron micrograph of a shadowed carbon replica...
Abstract
This chapter examines the microstructure and properties of annealed and normalized steels containing more than 0.25% carbon. It shows, using detailed micrographs, how incrementally higher levels of carbon affect the structure and distribution of pearlite and how it intermingles with proeutectoid ferrite and cementite. It explains how ferrite and pearlite respond to deformation and how related features such as slip lines, dislocations, shear bands, and kinking can be detected as well as what they reveal. It also describes the structure of patented wires, cast steels, and sintered steels and the morphology of manganese sulfide inclusions in castings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910475
EISBN: 978-1-62708-250-1
... may be detected by vacuum emission equipment.) Full range of photomultipliers may not be available. C.6 Electron probe microanalysis Analysis by crystal spectrometry or energy dispersion of x-rays emitted as a result of applying a focused (1 μm diam) electron beam to a surface Qualitative...
Abstract
This chapter discusses the techniques applicable to the diagnosis of corrosion failures, including visual and microscopic examination of corroded surfaces and microstructure; chemical analysis of the metal, corrosion products, and bulk environment; nondestructive evaluation methods; corrosion testing techniques; and mechanical testing techniques. A guide to investigative techniques used in corrosion failure analysis is provided in a table, describing the advantages and limitations of each technique. The principal stages of the investigation and analysis of corrosion failures discussed in the chapter are: collection of background information and sampling; preliminary laboratory examination; detailed metallographic and fractographic examinations; chemical analysis of corrosion products and bulk materials; corrosion testing for quality control; mechanical testing for quality control; and analysis of results and report writing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400215
EISBN: 978-1-62708-258-7
... and graphite flakes/nodules. Etching the specimen will simply complicate the microstructure and introduce potential errors in the analysis. Specimens for the electron probe microanalyzer (microprobe) are usually analyzed in the as-polished condition. This is because etching will remove some of the constituents...
Abstract
This chapter discusses the important aspects that a metallographer should understand in order to effectively reveal a microstructure. It begins by exploring etching response and how it can be a tool for revealing various microstructural features. The next part of the chapter discusses methods for revealing microstructure in the as-polished (unetched) specimen, then guidelines for selecting and using etchants when needed. The chapter discusses different types of etchants in terms of their ingredients, etching procedure, and major uses. The etchants discussed include basic etchants (nital and picral and their variations) and tint etchants for carbon and low-alloy steels and cast irons, and basic etchants for stainless steels. Finally, information is provided on different illumination methods (differential interference contrast and dark-field illumination) that can be used to highlight certain features in microstructures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400245
EISBN: 978-1-62708-258-7
... to austenite is completed during heating. Ac4. The temperature at which austenite transforms to delta ferrite during heating. accelerating potential. A relatively high voltage applied between the cathode and anode of an electron gun to accelerate electrons. The source of electrons in the electron microscope...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.9781627082587
EISBN: 978-1-62708-258-7
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400087
EISBN: 978-1-62708-258-7
... in a microstructure. The electron probe microanalyzer (EPMA, or simply “microprobe”) is the ultimate instrument to provide chemical composition. These instruments and others are discussed in detail in Chapter 6 . Fig. 4.5 Microstructure of a fully pearlitic steel rail. 4% picral etch. 1000× Fig. 4.6...
Abstract
This chapter discusses the important role of metallography and the metallographer in predicting and understanding the properties of metals and alloys. Examples are presented of a metallographer working as part of a team in a research laboratory of a large steel company and a metallographer working alone at a small iron foundry. The three basic areas in all metallography laboratories are discussed: the specimen preparation area, the polishing/etching area, and the observation/micrography area. Important safety issues in a metallographic laboratory are also considered.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.9781627082655
EISBN: 978-1-62708-265-5
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400049
EISBN: 978-1-62708-258-7
... grains is due to the dissolution of small aluminum nitride precipitates that were pinning the grain boundaries (the particles are much too small to be seen in the light microscope and must be examined in the transmission electron microscope). Once the particles dissolved upon heating, the grain...
Abstract
Microstructures can be altered intentionally or unintentionally. In some cases, metallographers must diagnose what may have happened to the steel or cast iron based on the microstructural details. This chapter discusses how microstructure in steels and cast irons can be intentionally altered during heat treatment, solidification, and deformation (hot and cold working). Some specific examples are then shown to illustrate what can go wrong through unintentional changes in microstructure, for example, the loss of carbon from the surface of the steel by the process known as decarburization or the buildup of brittle carbides on the grain boundaries of an austenitic stainless steel by the process known as sensitization.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400109
EISBN: 978-1-62708-258-7
... light microscopes or light optical microscopes. If a beam of electrons is employed, the microscope would be called an electron microscope, and if a beam of ions is employed, it is called an ion microscope. Electron microscopes are valuable tools for the metallographer and are discussed in the next...
Abstract
This chapter describes the various features of the metallurgical microscope. Key concepts are defined such as resolving power, the virtual image, bright- and dark-field illumination, numerical aperture, focal length, image contrast, depth of field, and spherical and chromatic aberration. Metallurgical microscope features such as apochromatic objectives, hyperplane oculars, vertical illuminators, counting reticles, widefield oculars, polarization filters, field diaphragms, interferometers, and tungsten-halogen lamps are explained. The optical system, nosepiece, types of objectives (the lens assembly close to the specimen) and eyepieces, and components of the illumination system are all explained. The last part of this chapter describes special procedures involved in using and calibrating the metallurgical microscope.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400169
EISBN: 978-1-62708-258-7
.... This is an “artifact” that could result in a misleading compositional analysis conducted using a scanning electron microscope (SEM) or an electron probe microanalyzer (EPMA) (microprobe) where silicon and carbon will be detected. Although steels do not contain silicon carbide particles, most steels and cast irons...
Abstract
This chapter instructs the metallographer on the basic skills required to prepare a polished metallographic specimen. It is organized in a chronological sequence starting with the information-gathering process on the material being investigated, then moving on to sectioning, mounting, grinding, and polishing processes, and ending with methods used to properly store metallographic specimens. The discussion covers the preparation procedures, the materials being investigated, and equipment used to perform these procedures.