Skip Nav Destination
Close Modal
Search Results for
electron beam powder-bed fusion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 26 Search Results for
electron beam powder-bed fusion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060117
EISBN: 978-1-62708-261-7
..., and brazing. It also discusses powder consolidation, rolling, drawing and extrusion, and common forging methods. fabrication finishing forging forming joining material removal powder processing METAL PRODUCTS that are subjected to mechanical reduction operations subsequent to casting...
Abstract
This chapter describes the processes involved in the fabrication of wrought and cast metal products. It discusses deformation processes including bending and forming, material removal processes such as milling, cutting, and grinding, and joining methods including welding, soldering, and brazing. It also discusses powder consolidation, rolling, drawing and extrusion, and common forging methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060085
EISBN: 978-1-62708-261-7
... the design and operation of melting furnaces as well as melting practices and the role of fluxing. It also discusses casting methods, nonferrous casting alloys, and atomization processes used to make metal powders. atomization foundry casting melting furnaces nonferrous casting alloys...
Abstract
This chapter describes the processes involved in alloy production, including melting, casting, solidification, and fabrication. It discusses the effects of alloying on solidification, the formation of solidification structures, supercooling, nucleation, and grain growth. It describes the design and operation of melting furnaces as well as melting practices and the role of fluxing. It also discusses casting methods, nonferrous casting alloys, and atomization processes used to make metal powders.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.9781627082532
EISBN: 978-1-62708-253-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480161
EISBN: 978-1-62708-318-8
... are produced from powders and how the different methods compare with each other and with conventional production techniques. The methods covered include powder injection molding, spray forming, additive manufacturing, blended elemental processing, and rapid solidification. fatigue limit fracture...
Abstract
Casting is the most economical processing route for producing titanium parts, and unlike most metals, the properties of cast titanium are on par with those of wrought. This chapter covers titanium melting and casting practices -- including vacuum arc remelting, consumable electrode arc melting, electron beam hearth melting, rammed graphite mold casting, sand casting, investment casting, hot isostatic pressing, weld repair, and heat treatment -- along with related equipment, process challenges, and achievable properties and microstructures. It also explains how titanium parts are produced from powders and how the different methods compare with each other and with conventional production techniques. The methods covered include powder injection molding, spray forming, additive manufacturing, blended elemental processing, and rapid solidification.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060429
EISBN: 978-1-62708-261-7
.... (2) The final pressing of a sintered compound. In chemistry, a substance of rela- powder metallurgy compact to obtain a defi- tively fixed composition and properties, nite surface configuration (not to be confused whose ultimate structural unit (molecule or with re-pressing or sizing). repeat unit...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.9781627082617
EISBN: 978-1-62708-261-7
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350125
EISBN: 978-1-62708-315-7
... adhered to the surface to be protected or suspended as a bag within a tank, for example, to provide protection. Hot-applied organisols, or plastisols, again usually of the vinyl family, can also be applied to a surface, typically by dipping or flow coating, to provide a protective film. Powder...
Abstract
This chapter discusses the use of coating methods and materials and their impact on corrosion and wear behaviors. It provides detailed engineering information on a wide range of processes, including organic, ceramic, and hot dip coating, metal plating and cladding, and the use of weld overlays, thermal spraying, and various deposition technologies.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350231
EISBN: 978-1-62708-315-7
... to the traditional hand-rubbed finish on silver. C calorizing. Imparting resistance to oxidation to an iron or steel surface by heating in aluminum powder at 800 to 1000 °C (1470 1830 °F). 234 / Surface Engineering for Corrosion and Wear Resistance carbonitriding. A case-hardening process in which a suitable ferrous...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.9781627083157
EISBN: 978-1-62708-315-7
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.9781627082679
EISBN: 978-1-62708-267-9
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2022
DOI: 10.31399/asm.tb.mbheaktmse.t56030001
EISBN: 978-1-62708-418-5
... , p 93 – 96 10.1016/j.scriptamat.2014.11.037 80. Piglione A. , Dovgyy B. , Liu C. , Gourlay C.M. , Hooper P.A. , and Pham M.S. , Printability and Microstructure of the CoCrFeMnNi High-Entropy Alloy Fabricated by Laser Powder Bed Fusion , Mater Lett , Vol 224...
Abstract
This chapter summarizes the progress that has been made in the study of high-entropy alloy (HEA) systems and the process-structure-property relationships that define them. It describes the various ways HEAs can be strengthened and explains how alloying elements influence tensile and yield strength, fracture toughness, and fracture strength. It discusses the stages of plastic deformation in HEAs and the role of dislocations and twinning in the evolution of microstructure. It reviews some of the work that has been done on fatigue behaviors and the methods developed to assess fatigue performance. It discusses the influence of defects on fatigue life, the effect of temperature and grain size on fatigue-crack propagation, and the role of nanotwinning in crack-growth retardation. It describes the methods used to produce HEAs in bulk and powder form and to apply them as protective coatings and films. It also identifies potential applications based on properties such as strength, hardness, density, wear resistance, high-temperature stability, and biocompatibility.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2022
DOI: 10.31399/asm.tb.dsktmse.t56050001
EISBN: 978-1-62708-432-1
... as (a) liquid state welding (e.g., fusion welding processes such as arc welding, laser welding, and electron beam welding) and (b) solid-state welding (e.g., forge welding, explosive welding, friction-stir welding, and solid-state diffusion bonding). Diffusion bonding is one of the solid-state-diffusion...
Abstract
A working knowledge of diffusion is necessary to understand and predict the behavior of metals and alloys during manufacturing and in certain types of service. This chapter covers the fundamentals of diffusion in solids and some of the applications in which diffusion plays a role. It discusses the mechanisms behind interstitial, substitutional, grain boundary, and surface diffusion, the derivation and use of Fick’s laws, and the basic principles of diffusion coating processes, including carburizing, nitriding, nitrocarburizing, cyaniding, carbonitriding, boriding, aluminizing, siliconizing, chromizing, vanadizing, and titanizing. It also discusses diffusion bonding and presents several approaches for dealing with oxide barrier problems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290201
EISBN: 978-1-62708-319-5
..., starch, or other polymers sprayed onto the powder bed during the build process. There is no known difficulty from these, other than possible retained carbon. 10.1.3 Powders Three powder-fabrication approaches are applied to 17-4 PH stainless steel: prealloyed powder, mixed elemental powder...
Abstract
This chapter provides details on powder-binder processing for three materials, namely precipitation-hardened 17-4 PH stainless steel, cemented carbides, and alumina. The types of powders, binders, feedstock, shaping processes, debinding, sintering cycles, compositions, microstructure, distortion, postsintering treatments, and mechanical properties are presented for each. The shaping options include powder-binder approaches such as binder jetting, injection molding, extrusion, slip and slurry casting, centrifugal casting, tape casting, and additive manufacturing. Sintering options are outlined with respect to attaining high final properties.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200437
EISBN: 978-1-62708-354-6
... to relieve the surge of pressure near the end of the pouring. Fluidize . . . To impart fluid-like properties to powders or sands, e.g., fluidized beds. Fluidity . . . The ability of molten metal to flow. Common devices used to measure fluidity are: spiral casting and the Chinese Puzzle. Foundry Returns...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.9781627083324
EISBN: 978-1-62708-332-4
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910363
EISBN: 978-1-62708-250-1
... protection. Hot-applied organisols, or plastisols, again usually of the vinyl family, can also be applied to a surface, typically by dipping or flow coating, to provide a protective film. Powder coatings are being increasingly used to protect concrete-reinforcing rod, as pipeline coatings, and as coating...
Abstract
Organic coatings (paints and plastic or rubber linings), metallic coatings, and nonmetallic inorganic coatings (conversion coatings, cements, ceramics, and glasses) are used in applications requiring corrosion protection. These coatings and linings may protect substrates by three basic mechanisms: barrier protection, chemical inhibition, and galvanic (sacrificial) protection. This chapter begins with a section on organic coating and linings, providing a detailed account of the steps involved in the coating process, namely, design and selection, surface preparation, application, and inspection and quality assurance. The next section discusses the methods by which metals, and in some cases their alloys, can be applied to almost all other metals and alloys: electroplating, electroless plating, hot dipping, thermal spraying, cladding, pack cementation, vapor deposition, ion implantation, and laser processing. The last section focuses on nonmetallic inorganic coatings including ceramic coating materials, conversion coatings, and anodized coatings.
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.9781627083232
EISBN: 978-1-62708-323-2
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2022
DOI: 10.31399/asm.tb.dsktmse.9781627084321
EISBN: 978-1-62708-432-1
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910331
EISBN: 978-1-62708-250-1
... , identifying the materials used for its construction and function. The outer containment is provided by a steel can covered with a metallized plastic-film label. The anode consists of powdered zinc metal surrounding a brass current collector. The cathode is manganese dioxide and carbon. Polymers and nonwoven...
Abstract
The challenge of materials selection is to achieve adequate performance at the lowest possible cost. Corrosion resistance is not the only property to be considered in making materials selections. Typical requirements and some of the procedures involved in making a selection and some of the factors that must be considered when determining the corrosion performance of a given material are listed in this chapter. The various steps that might be included in a materials selection process are then examined. These include a review of operating conditions and design, the selection of candidate materials, the in-depth evaluation of each candidate material, fabrication requirements, follow-up monitoring, and final materials selection. Material considerations such as cost, materials properties, and processing and fabrication requirements are subsequently covered. Finally, the chapter provides information on materials selection under general corrosion conditions and under conditions of localized corrosion forms such as pitting, crevice corrosion, and stress-corrosion cracking.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.9781627082976
EISBN: 978-1-62708-297-6
1