Skip Nav Destination
Close Modal
Search Results for
electron beam melting
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 267 Search Results for
electron beam melting
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1998
Fig. 16-16 Schematic of the effects of laser and electron beam heating, melting, and solidification. Source: Ref 63
More
Image
in Melting, Casting, and Powder Metallurgy[1]
> Titanium: Physical Metallurgy, Processing, and Applications
Published: 01 January 2015
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230253
EISBN: 978-1-62708-298-3
... vacuum induction melting, vacuum arc melting, and electron beam melting, and some of the ways they have been used to cast beryllium alloys. The chapter also includes information on metal purification and grain refinement procedures. beryllium casting grain refinement ingots melting...
Abstract
This chapter provides an overview of beryllium casting practices and the challenges involved. It discusses the stages of solidification, the effect of cooling rate, the difficulty of heat removal, and the potential for hot cracking. It describes common melting techniques, including vacuum induction melting, vacuum arc melting, and electron beam melting, and some of the ways they have been used to cast beryllium alloys. The chapter also includes information on metal purification and grain refinement procedures.
Image
in Melting, Casting, and Powder Metallurgy[1]
> Titanium: Physical Metallurgy, Processing, and Applications
Published: 01 January 2015
Fig. 8.53 Bleed air leak-detect bracket for Joint Strike Fighter built using electron beam melting technology. Courtesy of Oak Ridge National Laboratory
More
Image
in Melting, Casting, and Powder Metallurgy[1]
> Titanium: Physical Metallurgy, Processing, and Applications
Published: 01 January 2015
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2024
DOI: 10.31399/asm.tb.pmamfa.t59400391
EISBN: 978-1-62708-479-6
... calorimetry EBM electron beam melting EDS energy-dispersive spectroscopy EELS electron energy loss spectroscopy EPU elastomeric polyurethane ESEM environmental scanning electron microscopy fcc face-centered cubic FCTS flying car transport system FDM fused deposition modeling...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170308
EISBN: 978-1-62708-297-6
... temperature. Tungsten and tungsten mill products are produced primarily by P/M techniques. Tungsten sheet has also been produced by chemical vapor deposition (CVD). Tungsten and tungsten alloys may also be produced by arc casting and electron beam melting, but these processes are not of significant...
Abstract
This article discusses the role of alloying in the production and use of common refractory metals, including molybdenum, tungsten, niobium, tantalum, and rhenium. It provides an overview of each metal and its alloys, describing the compositions, properties, and processing characteristics as well as the effect of alloying elements. It also discusses strengthening mechanisms and, where appropriate, corrosion behavior.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480161
EISBN: 978-1-62708-318-8
... melting, electron beam hearth melting, rammed graphite mold casting, sand casting, investment casting, hot isostatic pressing, weld repair, and heat treatment -- along with related equipment, process challenges, and achievable properties and microstructures. It also explains how titanium parts...
Abstract
Casting is the most economical processing route for producing titanium parts, and unlike most metals, the properties of cast titanium are on par with those of wrought. This chapter covers titanium melting and casting practices -- including vacuum arc remelting, consumable electrode arc melting, electron beam hearth melting, rammed graphite mold casting, sand casting, investment casting, hot isostatic pressing, weld repair, and heat treatment -- along with related equipment, process challenges, and achievable properties and microstructures. It also explains how titanium parts are produced from powders and how the different methods compare with each other and with conventional production techniques. The methods covered include powder injection molding, spray forming, additive manufacturing, blended elemental processing, and rapid solidification.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.t67850541
EISBN: 978-1-62708-260-0
... cyclic polarity (Dickinson). Use normal polarity, silk cloth, 0.04 A/cm2, 5 min (Dickinson). Use normal polarity, 2 min, 0.04 A/cm2 (Dickinson). Use cyclic polarity, 3 min, 0.04 A/cm2 (Dickinson). For 1 cm2 area, use 40 mA at 10 V ac for 10 min. For electron-beam-melted samples, use 50 mA at 20 V ac...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410551
EISBN: 978-1-62708-265-5
... laser and electron beams. The chapter compares methods and includes several example applications. chemical vapor deposition electron beam melting ion implantation laser melting low-pressure carburizing physical vapor deposition plasma carburizing plasma nitriding salt bath coating surface...
Abstract
This chapter describes surface modification processes that go beyond conventional heat treatments, including plasma nitriding, plasma carburizing, low-pressure carburizing, ion implantation, physical and chemical vapor deposition, salt bath coating, and transformation hardening via high-energy laser and electron beams. The chapter compares methods and includes several example applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930311
EISBN: 978-1-62708-359-1
... Abstract This article discusses the fusion welding processes that are most widely used for joining titanium, namely, gas-tungsten arc welding, gas-metal arc welding, plasma arc welding, laser-beam welding, and electron-beam welding. It describes several important and interrelated aspects...
Abstract
This article discusses the fusion welding processes that are most widely used for joining titanium, namely, gas-tungsten arc welding, gas-metal arc welding, plasma arc welding, laser-beam welding, and electron-beam welding. It describes several important and interrelated aspects of welding phenomena that contribute to the overall understanding of titanium alloy welding metallurgy. These factors include alloy types, weldability, melting and solidification effects on weld microstructure, postweld heat treatment effects, structure/mechanical property/fracture relationships, and welding process application.
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2024
DOI: 10.31399/asm.tb.pmamfa.t59400207
EISBN: 978-1-62708-479-6
...) radiation, gamma rays, x-rays, electron beams, or visible light to treat curable resins, liquid, or photopolymers to change the material chemistry to develop solidified structures ( Ref 10.21 , 10.22 ). While UV and electron beams are more commonly used to treat photomask materials (photopolymers...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350087
EISBN: 978-1-62708-315-7
... Hardening In EB hardening, the surface of the hardenable steel is heated rapidly to the austenitizing temperature, usually with a defocused electron beam to prevent melting. The mass of the work-piece conducts the heat away from the treated surface at a rate that is rapid enough to produce hardening...
Abstract
This chapter discusses surface engineering treatments, including flame hardening, induction hardening, high-energy beam hardening, laser melting, and shot peening. It describes the basic implementation of each method, the materials for which they are suited, and their effect on surface metallurgy.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290243
EISBN: 978-1-62708-306-5
..., namely structural, hot melt, pressure sensitive, water based, and ultraviolet and electron beam cured. The chapter ends with a discussion on some general guidelines for adhesive bonding and the basic steps in the adhesive bonding process. adhesive bonding adhesively bonded joints adhesives...
Abstract
Adhesive bonding is a widely used industrial joining process in which a polymeric material is used to join two separate pieces (the adherends or substrates). This chapter begins with a discussion on the advantages and disadvantages of adhesive bonding, followed by a section providing information on the theory of adhesion. The chapter then describes the considerations for designing adhesively bonded joints and for testing or characterizing adhesive materials. The following section covers the characteristics of the most important synthetic adhesive systems and five groups of adhesives, namely structural, hot melt, pressure sensitive, water based, and ultraviolet and electron beam cured. The chapter ends with a discussion on some general guidelines for adhesive bonding and the basic steps in the adhesive bonding process.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290079
EISBN: 978-1-62708-306-5
... conversion of the kinetic energy of these electrons into thermal energy as they impact and penetrate into the workpiece on which they are impinging causes the weld-seam interface surfaces to melt and produces the weld-joint coalescence. Electron beam welding is used to weld any metal that can be arc welded...
Abstract
This chapter discusses the fusion welding processes, namely oxyfuel gas welding, oxyacetylene braze welding, stud welding (stud arc welding and capacitor discharge stud welding), high-frequency welding, electron beam welding, laser beam welding, hybrid laser arc welding, and thermit welding.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230361
EISBN: 978-1-62708-298-3
... The material from a thermal vaporization source reaches the substrate without significant collisions with gas molecules present in the space between the source and substrate. The source may be melted and evaporated by a number of different methods (e.g., electron beam heating, resistance heating, induction...
Abstract
This chapter discusses coating technologies that are applicable to beryllium, including physical and chemical vapor deposition, thermal evaporation, electroplating, sputtering, ion plating, and plasma arc spraying. It describes the advantages and disadvantages of each method and the effect of temperature, pressure, and other process variables on the microstructures and properties developed.
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2024
DOI: 10.31399/asm.tb.pmamfa.t59400247
EISBN: 978-1-62708-479-6
... drawbacks, including increased porosity and the need for preheating and thermoplastic binder solids ( Ref 11.3 , 11.7 ). In PBF-EB, a high-energy-density electron beam rasters over the powder bed, deflected by electromagnetic coils for layerwise selective melting. This comparatively faster building process...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900305
EISBN: 978-1-62708-358-4
... heating, melting, and solidification ( Ref 59 ). Electron beam treatments must be conducted in vacuum, but laser light is not subject to this constraint and thus offers considerable flexibility in manufacturing operations. Also, unlike induction and flame heating, lasers can be located at some distance...
Abstract
Surface modification technologies improve the performance of tool steels. This chapter discusses the processes involved in oxide coatings, nitriding, ion implantation, chemical and physical vapor deposition processing, salt bath coating, laser and electron beam surface modification, and boride coatings that improve the performance of hot-work and high-speed tool steels.
Image
Published: 01 January 2015
Fig. 22.14 Schematic diagram of the effects of laser- and electron beam heating, melting, and solidification. Source: Ref 22.53
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240583
EISBN: 978-1-62708-251-8
... be made by powder metallurgy (PM) techniques but are usually made by consumable electrode vacuum arc melting or by electron beam melting. Ingots are hot worked at 790 to 1205 °C (1450 to 2200 °F), followed by cold working and forming at 205 to 315 °C (400 to 600 °F). Niobium alloys can be recrystallized...
Abstract
The refractory metals include niobium, tantalum, molybdenum, tungsten, and rhenium. These metals are considered refractory because of their high melting points, high-temperature mechanical stability, and resistance to softening at elevated temperatures. This article discusses the composition, properties, fabrication procedures, advantages and disadvantages, and applications of these refractory metals and their alloys. A comparison of some of the properties of the refractory metals with those of iron, copper, and aluminum is given in a table. The article concludes with a brief section on refractory metal protective coatings.
1