Skip Nav Destination
Close Modal
Search Results for
electrical behavior
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 507 Search Results for
electrical behavior
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730037
EISBN: 978-1-62708-283-9
... Abstract This chapter examines some of the behaviors that suit materials for electrical and electronic applications. It begins by explaining how charge carriers move in metals and semiconductors and how properties such as conductivity, mobility, and resistivity are derived. It discusses...
Abstract
This chapter examines some of the behaviors that suit materials for electrical and electronic applications. It begins by explaining how charge carriers move in metals and semiconductors and how properties such as conductivity, mobility, and resistivity are derived. It discusses the significance of energy bands, intrinsic and extrinsic conduction, and the properties of compound semiconductors. It also covers semiconductor devices, including p-n junctions, light emitting diodes, transistors, and piezoelectric crystals.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.9781627082839
EISBN: 978-1-62708-283-9
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860163
EISBN: 978-1-62708-348-5
..., 1936 ). Figure 5.12 Behavior of the α -phase resistivity of brass ( Henry and Schroeder, 1963 ). Figure 5.13 The effect of martensitic transformation of the resistivity of β -brass ( Hummel, Koger, and Pasupathi, 1968 ). Figure 5.8 Electrical resistivity of Cu–Fe alloys...
Abstract
This chapter presents topics pertaining to resistance at cryogenic temperatures: measurement, the resistive mechanisms, and available data. The chapter also presents brief descriptions of the various mechanisms that are operative in producing resistance at low temperatures. The alloys discussed are the nondilute mixtures of metals. An introduction to low-temperature electrical properties of specific metals and alloys is included.
Image
Published: 01 December 2000
Fig. 10.5 Summary of machining effects on high-cycle fatigue behavior of Ti-6Al-4V (annealed, 32–34 HRC). EDM, electrical discharge machining; CHM, chemical milled
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550511
EISBN: 978-1-62708-307-2
... Abstract Ceramics normally have high melting temperatures, excellent chemical stability and, due to the absence of conduction electrons, tend to be good electrical and thermal insulators. They are also inherently hard and brittle, and when loaded in tension, have almost no tolerance for flaws...
Abstract
Ceramics normally have high melting temperatures, excellent chemical stability and, due to the absence of conduction electrons, tend to be good electrical and thermal insulators. They are also inherently hard and brittle, and when loaded in tension, have almost no tolerance for flaws. This chapter describes the applications, properties, and behaviors of some of the more widely used structural ceramics, including alumina, aluminum titanate, silicon carbide, silicon nitride, zirconia, zirconia-toughened alumina (ZTA), magnesia-partially stabilized zirconia (Mg-PSZ), and yttria-tetragonal zirconia polycrystalline (Y-TZP). It also provides information on materials selection, design optimization, and joining methods, and covers every step of the ceramic production process.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030019
EISBN: 978-1-62708-282-2
... they are electrically coupled in a conductive solution. The direction of electron flow, and therefore the galvanic behavior, depends on which metal or alloy is more active. The more active metal or alloy becomes anodic, and the more noble metal or alloy becomes cathodic in the couple. Galvanic Series A galvanic...
Abstract
This chapter provides a brief account of galvanic corrosion, which occurs when a metal or alloy is electrically coupled to another metal or conducting nonmetal in the same electrolyte. It begins by describing the galvanic series of metals and alloys useful for predicting galvanic relationships, followed by a brief section on polarization of metals or alloys. The effects of area, distance, and geometric shapes on galvanic-corrosion behavior are then discussed. Various alloys susceptible to galvanic corrosion are briefly reviewed. The chapter also discusses various modes of attack that lead to galvanic corrosion, along with methods for predicting and controlling galvanic corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170457
EISBN: 978-1-62708-297-6
... electrical connectors, vacuum tube components, and resistance welding electrodes. Fig. 1 Softening behavior of dispersion-strengthened copper compared to oxygen-free copper and copper-zirconium alloy High-Copper Alloys As stated earlier, the high-copper or dilute alloys (C16200 to C19900...
Abstract
This article discusses the composition, properties, and behaviors of copper and its alloys. It begins with an overview of the characteristics, applications, and commercial grades of wrought and cast copper. It then discusses the role of alloying, explaining how zinc, tin, aluminum, silicon, and nickel affect the physical and mechanical properties of coppers and high-copper alloys as well as brasses, bronzes, copper-nickels, and nickel silvers. It also explains how alloying affects electrical conductivity, corrosion resistance, stress-corrosion cracking, and processing characteristics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170596
EISBN: 978-1-62708-297-6
... Abstract This article explains how alloying elements affect the properties and behaviors of electrical contacts. It describes the composition, strength, hardness, and conductivity of a wide range of contact alloys and composites based on silver, copper, gold, platinum, palladium, tungsten...
Abstract
This article explains how alloying elements affect the properties and behaviors of electrical contacts. It describes the composition, strength, hardness, and conductivity of a wide range of contact alloys and composites based on silver, copper, gold, platinum, palladium, tungsten, and molybdenum, and related oxides and carbides.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730051
EISBN: 978-1-62708-283-9
..., and magnetostatic energy, vary based on the size of the domain. It also discusses the process of magnetization and compares and contrasts hard and soft magnetic materials. ferromagnetism hard magnetic materials magnetic behavior soft magnetic materials Ferromagnetism Magnetism seems...
Abstract
This chapter is a review of magnetic materials and how they behave. It begins by discussing the significance of ferromagnetism and comparing the Curie temperature of several ferromagnetic elements. It then discusses the concept of magnetic domains and illustrates how flux paths, and magnetostatic energy, vary based on the size of the domain. It also discusses the process of magnetization and compares and contrasts hard and soft magnetic materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490001
EISBN: 978-1-62708-340-9
... electricity from coal ( Ref 4 ). P.C. = pulverized coal. S.G.D. = secondary gas desulfurization. A.F.B.C. = atmospheric fluidized-bed combustion. P.F.B.C. = pressurized fluidized-bed combustion. Abstract The ability to accurately assess the remaining life of components is essential to the operation...
Abstract
The ability to accurately assess the remaining life of components is essential to the operation of plants and equipment, particularly those in service beyond their design life. This, in turn, requires a knowledge of material failure modes and a proficiency for predicting the near and long term effects of mechanical, chemical, and thermal stressors. This chapter presents a broad overview of the types of damage to which materials are exposed at high temperatures and the approaches used to estimate remaining service life. It explains how operating conditions in power plants and oil refineries can cause material-related problems such as embrittlement, creep, thermal fatigue, hot corrosion, and oxidation. It also discusses the factors and considerations involved in determining design life, defining failure criteria, and implementing remaining-life-assessment procedures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110279
EISBN: 978-1-62708-247-1
... the two is which is known as high-K metal gate, also known as HKMG. As gate lengths keep reducing to increase the speed of operation and reduce cost, MOS devices start deviating from their ideal behavior and start exhibiting what is called short-channel effects. It occurs when the channel length...
Abstract
Transistors are the most important active structure of any semiconductor component. Performance characteristics of such devices within the specifications are key to ensuring proper functionality and long-term reliability of the product. In this article, a summary of the semiconductor technology from design to manufacturing and the characterization methods are discussed. The focus is on two prominent MOS structures: planar MOS device and FinFET device. The article covers the device parameters and device properties that determine the design criteria and the device tuning procedures. The discussion includes the effects of drain induced barrier lowering, velocity saturation, hot carrier degradation, and short channel on these devices.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030165
EISBN: 978-1-62708-282-2
... that it becomes the cathode (cathodic protection). This chapter briefly reviews these methods of corrosion protection. The factors affecting corrosion behavior are covered. In addition, the chapter provides information on coatings and inhibitors, which are used in corrosion protection. corrosion protection...
Abstract
The basic concept for most methods of corrosion protection is to remove one or more of the electrochemical cell components so that the pure metal or metal alloy of interest will not corrode. Another widely used corrosion protection approach is to change the nature of the anode so that it becomes the cathode (cathodic protection). This chapter briefly reviews these methods of corrosion protection. The factors affecting corrosion behavior are covered. In addition, the chapter provides information on coatings and inhibitors, which are used in corrosion protection.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870075
EISBN: 978-1-62708-299-0
... that exhibit both active and passive behavior. The rate of attack depends on (a) the difference in corrosion potentials between the two metals, (b) the electrical resistance between the two metals, (c) the conductivity of the electrolyte, (d) the cathode-anode area ratio, and (e) the polarization...
Abstract
This chapter discusses three related corrosion mechanisms, galvanic, deposition, and stray-current corrosion, explaining why they occur and how they affect the corrosion process. It includes information on testing and prevention methods along with examples of the type of damage associated with these corrosion mechanisms.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240303
EISBN: 978-1-62708-251-8
... Abstract The physical properties of a material are those properties that can be measured or characterized without the application of force and without changing material identity. This chapter discusses in detail the common physical properties of metals, namely density, electrical properties...
Abstract
The physical properties of a material are those properties that can be measured or characterized without the application of force and without changing material identity. This chapter discusses in detail the common physical properties of metals, namely density, electrical properties, thermal properties, magnetic properties, and optical properties. Some physical properties for a number of metals are given in a table.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860133
EISBN: 978-1-62708-348-5
... heat-flow apparatus. Thermal grounding is indicated by Δ. Figure 4.7 Resistance to electronic heat conduction: temperature dependencies and imperfection (defect) densities progressing from pure, annealed metals to highly alloyed metals. Figure 4.6 Electrical analog of thermal...
Abstract
This chapter presents basic principles and the theoretical results of heat transport in solids. Thermal conductivity and thermal diffusivity are the principal properties discussed. Discussions are also included on the effects of temperature, magnetic field, and metallurgical variations caused by composition, processing, and heat-treatment differences. Numerous graphs illustrate the qualitative and quantitative effects of these variables. Measurement methods and associated accuracies and pertinent empirical correlations are presented.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910497
EISBN: 978-1-62708-250-1
.... anodic protection. (1) A technique to reduce the corrosion rate of a metal by polarizing it into its passive region, where dissolution rates are low. (2) Imposing an external electrical potential to protect a metal from corrosive attack. (Applicable only to metals that show ac- tive-passive behavior...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.9781627082501
EISBN: 978-1-62708-250-1
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860203
EISBN: 978-1-62708-348-5
... Copper Research Association , New York . Fickett F. R. (1976) . A Preliminary Investigation of the Behavior of High Purity Copper in High Magnetic Fields . INCRA Report 186C, International Copper Research Association , New York . Fickett F. R. (1982) . Electric and magnetic...
Abstract
This chapter provides a view of magnetism in materials used at low temperatures. The discussion covers the concepts, definitions, and systems of units that are unique to the study of magnetic properties. The chapter provides a description of some of the techniques and devices used for determining magnetic properties.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060239
EISBN: 978-1-62708-355-3
... appropriate precautions. Low temperatures may cause embrittlement of the material, causing it to fail at lower-than-expected loads. Test personnel must be aware of the potential and prepare for brittle fracture of structural components. Fig. 1 Simplified deformation behavior (Ashby) maps...
Abstract
This chapter details low-temperature test procedures and equipment. It discusses the role temperature plays in the properties of typical engineering materials. The effect that lowering the temperature of a solid has on the mechanical properties of a material is summarized for three principal groups of engineering materials: metals, ceramics, and polymers (including fiber-reinforced polymers). The chapter describes the factors that influence the selection of tensile testing procedures for low-temperature evaluation, along with a comparison of tensile and compression tests. It covers the parameters and standards related to low-temperature tensile testing. The chapter discusses the factors involved in controlling test temperature. Finally, the chapter discusses the safety issues concerning the use of cooled methanol, liquid-nitrogen, and liquid helium.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910427
EISBN: 978-1-62708-250-1
... to predict corrosion behavior when service history is lacking and time or budget constraints prohibit field testing. They can also be used as screening tests prior to field testing. Laboratory tests are particularly suited for quality control, materials selection, material and environment combinations...
Abstract
Corrosion testing and monitoring are powerful tools in the fight to control corrosion. This chapter provides a general overview of three major categories of corrosion tests, namely laboratory tests, pilot-plant tests, and field tests. It begins with brief sections describing the purposes of corrosion tests, the logical steps in a test program, and the preparation and cleaning of test specimens. The focus then moves on to discuss the types and applications of these test categories and the associated evaluation procedures. Excluding electrochemical tests which are addressed separately in this chapter, the other laboratory tests covered under this category are simulated atmosphere tests, salt-spray tests, and immersion tests. Only corrosion testing in the atmosphere is discussed in the section on field tests. Corrosion monitoring techniques are finally considered, covering the characteristics of corrosion monitoring techniques, the factors to be considered in selecting a corrosion-monitoring method, and the strategies in corrosion monitoring.
1