Skip Nav Destination
Close Modal
Search Results for
elastic properties
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 554 Search Results for
elastic properties
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860001
EISBN: 978-1-62708-348-5
... Abstract Many scientific-technological advances depend critically on solid-state elastic properties, their magnitudes, and their responses to variables like stress and temperature. This chapter provides the definitions and descriptions of elastic constants and emphasizes five aspects...
Abstract
Many scientific-technological advances depend critically on solid-state elastic properties, their magnitudes, and their responses to variables like stress and temperature. This chapter provides the definitions and descriptions of elastic constants and emphasizes five aspects of engineering-material solid-state elastic constants: general properties; interrelationships; relationships, especially thermodynamic to other physical properties; changes during cooling from ambient to near-zero temperature; and near-zero-temperature behavior.
Image
in Case Studies of Powder-Binder Processing Practices
> Binder and Polymer Assisted Powder Processing
Published: 30 April 2020
Fig. 10.23 Elastic properties are nearly linearly dependent on composition, as illustrated by the elastic modulus and Poisson’s ratio.
More
Image
Published: 01 August 2012
Fig. 2.8 Schematic illustrating the influences of various properties on elastic recovery in forming materials
More
Image
in Obstacles to High-Temperature Structural Durability of Continuous-Fiber Metal-Matrix Composites
> Fatigue and Durability of Metals at High Temperatures
Published: 01 July 2009
Fig. 9.4 Severe thermal ratcheting due to elastic-viscoplastic property mismatch of tungsten-fiber and nickel-base superalloy matrix. Courtesy of D.W. Petrasek. Source: Ref 9.5
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630013
EISBN: 978-1-62708-270-9
... Abstract This chapter focuses on some of the facts of mechanical properties of metals that must be understood to successfully undertake the task of failure analysis. The discussion begins by describing the causes and effects of elastic and plastic deformation followed by a section describing...
Abstract
This chapter focuses on some of the facts of mechanical properties of metals that must be understood to successfully undertake the task of failure analysis. The discussion begins by describing the causes and effects of elastic and plastic deformation followed by a section describing the effects of temperature variations on mechanical properties, both in tension and in compression. The nonlinear behavior of gray cast iron caused by the graphite flakes is then described. Finally, the effect of stress concentrations on high-strength metals is considered.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2022
DOI: 10.31399/asm.tb.mbheaktmse.t56030021
EISBN: 978-1-62708-418-5
..., ductility, and density for specific applications. It also provides information on twinning behaviors, stacking faults, elastic properties, coating and film deposition methods, manufacturing challenges, and the use of computational techniques for alloy design. alloying elements body-centered cubic...
Abstract
This chapter, presented in a question-and-answer format, covers many practical aspects of high-entropy alloys (HEAs). It provides clear and concise answers to more than 50 questions, imparting knowledge on alloying elements, heat treatments, diffusion mechanisms, phase formation, lattice distortion, crystal and grain structures, structure-property relationships, microstructure control, and characterization methods. It likewise explains how to calculate the effect of strengthening processes on the mechanical properties of HEAs and offers insights on how to balance strength, ductility, and density for specific applications. It also provides information on twinning behaviors, stacking faults, elastic properties, coating and film deposition methods, manufacturing challenges, and the use of computational techniques for alloy design.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060091
EISBN: 978-1-62708-355-3
... environments. The chapter then briefly describes design criteria for some basic property combinations such as strength, weight, and costs as well as stiffness in tension. Additionally, it describes the processes involved in mechanical testing for stress at failure and elastic modulus. Finally, the chapter...
Abstract
This chapter introduces the basic concepts of mechanical design and its general relation with the properties derived from tensile testing. It begins with a description of the basic objective of product design. Next, a simple tie bar is used to illustrate the application of mechanical property data to material selection and design and to highlight the general implications for mechanical testing. Material subjected to the basic stress conditions is considered to establish design approaches and mechanical test methods, first in static loading and then in dynamic loading and aggressive environments. The chapter then briefly describes design criteria for some basic property combinations such as strength, weight, and costs as well as stiffness in tension. Additionally, it describes the processes involved in mechanical testing for stress at failure and elastic modulus. Finally, the chapter examines the correlation between hardness and strength.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230151
EISBN: 978-1-62708-298-3
... to the anisotropy of elastic constants and slip properties, resulting in a specific stiffness, or modulus-to-density ratio, six times higher than that of any other structural material. beryllium ductility elastic properties tensile properties thermal properties 13.1 Beryllium Phases and Phase...
Abstract
This chapter provides an overview of the physical metallurgy of beryllium, discussing phases and phase transformations, physical and mechanical properties, heat treatment, and alloying. It explains how the atomic structure of beryllium, particularly its sp hybrid state, contributes to the anisotropy of elastic constants and slip properties, resulting in a specific stiffness, or modulus-to-density ratio, six times higher than that of any other structural material.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230027
EISBN: 978-1-62708-298-3
... Abstract This chapter provides a thorough review of the crystal structure of beryllium and its elastic, thermal, and nuclear properties. It also includes information on electrical and optical properties and an extensive amount of data in the form of tables and plots. beryllium...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060001
EISBN: 978-1-62708-355-3
... the behavior of a material under forms of loading other than uniaxial tension. This chapter provides a brief overview of tensile specimens and test machines, stress-strain curves, true stress and strain, and test methodology and data analysis. elastic properties stress-strain curves tensile properties...
Abstract
Tensile tests are performed for several reasons related to materials development, comparison, selection, and quality control. The properties derived from tensile tests are used in selecting materials for engineering applications. Tensile properties often are used to predict or estimate the behavior of a material under forms of loading other than uniaxial tension. This chapter provides a brief overview of tensile specimens and test machines, stress-strain curves, true stress and strain, and test methodology and data analysis.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 15 June 2021
DOI: 10.31399/asm.tb.mpktmse.t56010001
EISBN: 978-1-62708-384-3
... to determine when yielding begins. It also explains how to determine other properties via tensile tests, including ductility, toughness, and modulus of resilience. elastic modulus extensometers impact strength linear elastic fracture toughness plastic deformation properties Poisson's ratio tensile...
Abstract
Product design requires an understanding of the mechanical properties of materials, much of which is based on tensile testing. This chapter describes how tensile tests are conducted and how to extract useful information from measurement data. It begins with a review of the different types of test equipment used and how they compare in terms of loading force, displacement rate, accuracy, and allowable sample sizes. It then discusses the various ways tensile measurements are plotted and presents examples of each method. It examines a typical load-displacement curve as well as engineering and true stress-strain curves, calling attention to certain points and features and what they reveal about the test sample and, in some cases, the cause of the behavior observed. It explains, for example, why some materials exhibit discontinuous yielding while others do not, and in such cases, how to determine when yielding begins. It also explains how to determine other properties via tensile tests, including ductility, toughness, and modulus of resilience.
Series: ASM Technical Books
Publisher: ASM International
Published: 15 June 2021
DOI: 10.31399/asm.tb.mpktmse.t56010019
EISBN: 978-1-62708-384-3
... force, sample lengthening, and machine stiffness, and with mechanical properties and parameters such as elastic modulus, Young’s modulus, strength coefficient, strain-hardening exponent, and modulus of resilience. They also cover a wide range of materials including various grades of aluminum and steel...
Abstract
This appendix provides readers with worked solutions to 25 problems involving calculations associated with tensile testing and the determination of mechanical properties and variables. The problems deal with engineering factors and considerations such as stress and strain, loading force, sample lengthening, and machine stiffness, and with mechanical properties and parameters such as elastic modulus, Young’s modulus, strength coefficient, strain-hardening exponent, and modulus of resilience. They also cover a wide range of materials including various grades of aluminum and steel as well as iron, titanium, brass, and copper alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000221
EISBN: 978-1-62708-312-6
... Abstract This appendix provides property data, including strength, tensile properties, elastic constants, and hardness, for 400-series powder metal stainless steels. elastic constants hardness powder metallurgy stainless steel tensile properties Table A2.1 gives minimum...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000219
EISBN: 978-1-62708-312-6
... Abstract This appendix provides property data, including strength, tensile properties, elastic constants, and hardness, for 300-series powder metal stainless steels. elastic constants hardness powder metallurgy stainless steel strength tensile properties Table A1.1 gives...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.htpa.t53310067
EISBN: 978-1-62708-346-1
..., that is, the interaction between indenter, type of fastening, and complete flight body and their respective elastic properties The energy consumed by the deformation work, and/or the measured residual energy, depend(s) on both the plastic and the elastic behavior of the sample, because the two fractions...
Abstract
In dynamic hardness tests, the test force is applied to the defined indenter in an accelerated way (with a high application rate). Dynamic test methods relate hardness to the elastic response of a material, whereas the classical static indentation tests determine hardness in terms of plastic behavior. This chapter describes the most important and widespread dynamic hardness testing methods. These tests fall into two categories: methods in which the deformation is measured and methods in which the energy is measured. Methods that measure deformation include the Poldi hammer method, the shearing force method, the Baumann hammer method, and the Dynatest method. Methods that measure energy include the Shore method, the Leeb method, and the Nitronic method. The chapter concludes with a discussion of applications of dynamic hardness testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540431
EISBN: 978-1-62708-309-6
... crack tip. See Chapters 4 and 5. dimensions in all directions. elastic strain. See elastic deformation. elasticity. The property of a material by virtue exfoliation corrosion. A type of corrosion that of which deformation caused by stress dis- attacks the exposed end-grain layers of an ex- appears...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240201
EISBN: 978-1-62708-251-8
.... Source: Ref 1 12.1 Tension The tensile test is the most commonly used mechanical property test. Its chief use is to determine the properties related to the elastic design of structures. In addition, the tensile test gives information on the plasticity and fracture of a material. The main...
Abstract
The mechanical behavior of a material is its response to an applied load or force. Important mechanical properties are strength, hardness, stiffness, and ductility. This chapter discusses three principal ways in which these properties are tested: tension, compression, and shear. Important tensile properties that can be determined by the tensile test include yield strength, ultimate tensile strength, ductility, resilience, and toughness. The chapter describes the effects of stress concentrations on ductile metals under cyclic loads. Other topics covered include combined stresses, yield criteria, and residual stresses of metals.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.9781627083096
EISBN: 978-1-62708-309-6
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060223
EISBN: 978-1-62708-343-0
..., and enhanced interfaces for oxidation. continuous-fiber metal-matrix composites elastic-viscoplastic property mismatch residual stress relaxation thermal expansion mismatch THE TECHNOLOGICAL ADVANTAGES of continuous-fiber-reinforced composites include increased static strength and lower density...
Abstract
Fiber-reinforced metal-matrix composites have carved out a niche in applications requiring high strength to weight ratios, but they are susceptible to failure when exposed to high temperatures and cyclic loads. This chapter discusses the obstacles that must be overcome to improve the creep-fatigue behavior of these otherwise promising materials. It addresses six areas that have been the focus of intense research, including thermal-expansion and elastic-viscoplastic mismatch, thermally induced biaxiality and interply stresses, creep and cyclic relaxation of residual stresses, and enhanced interfaces for oxidation.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060115
EISBN: 978-1-62708-355-3
... Testing.” Because such variables have significant influences on the measured tensile properties, an understanding of the influences is necessary for accurate interpretation and use of most tensile data. The elastic moduli of cast iron, carbon steel, and many other engineering materials are dependent...
Abstract
The tensile test provides a relatively easy, inexpensive technique for developing mechanical property data for the selection, qualification, and utilization of metals and alloys in engineering service. The tensile test requires interpretation, and interpretation requires a knowledge of the factors that influence the test results. This chapter provides a metallurgical perspective for such interpretation. The topics covered include elastic behavior, anelasticity, damping, proportional limit, yield point, ultimate strength, toughness, ductility, strain hardening, and yielding and the onset of plasticity. The chapter describes the effects of grain size on yielding, effect of cold work on hardness and strength, and effects of temperature and strain-rate on the properties of metals and alloys. It provides information on true stress-strain relationships and special tests developed to measure the effects of test/specimen conditions. Finally, the chapter covers the characterization of tensile fractures of ductile metals and alloys.
1