1-20 of 397 Search Results for

elastic plastic deformation

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 December 2006
Fig. 4.30 Lattice structure during deformation. (a) Elastic deformation. (b) Plastic deformation More
Image
Published: 01 December 2004
Fig. 5 Elastic and plastic deformation of a wire with the fingers. With small forces (top), all of the bending is elastic and disappears when the force is released. With greater forces (below), some of the bending is recoverable (elastic), but most of the bending is not recovered (is plastic More
Image
Published: 01 October 2011
Fig. 12 Plastic (remaining) and elastic deformation for the hardness test according to HRC and steel test pieces. Source: Ref 1 More
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730023
EISBN: 978-1-62708-283-9
..., plastic deformation, ductility, hardness, creep, fatigue, and fracture. It also describes the primary components of a Charpy impact tester and the role they serve. creep ductility elasticity fatigue fracture failure hardness impact test plastic deformation strain stress tension test...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630013
EISBN: 978-1-62708-270-9
... Abstract This chapter focuses on some of the facts of mechanical properties of metals that must be understood to successfully undertake the task of failure analysis. The discussion begins by describing the causes and effects of elastic and plastic deformation followed by a section describing...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.9781627083553
EISBN: 978-1-62708-355-3
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060265
EISBN: 978-1-62708-355-3
.... Separation of a solid accompanied by little or no macroscopic plastic deformation. Typically, brittle fracture occurs by rapid crack propagation with less expenditure of energy than for ductile fracture. bulk modulus. See bulk modulus of elasticity. bulk modulus of elasticity (K). The measure of resistance...
Image
Published: 01 August 2013
Fig. 3.2 Use of the fingers to sense the elastic and plastic response of a wire. With a low force (top) the deformation is entirely elastic and the bending disappears when the force is removed. With greater force (bottom) the elastic portion of the bending disappears when the force is removed More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540281
EISBN: 978-1-62708-309-6
.... Elastic-plastic or fully plastic analysis such as the J -integral approach is used when large-scale yielding occurs. For crack growth at high temperature, under constant load, the material near the crack tip may undergo viscoelastic deformation, or creep. The crack-tip stress field, which takes the basic...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610025
EISBN: 978-1-62708-303-4
... factor of safety. With most metals, there is a gradual transition from elastic to plastic behavior, and the point at which plastic deformation actually begins is difficult to define with precision. The transition from elastic to plastic deformation is illustrated in Fig. 6 . When a specimen...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240201
EISBN: 978-1-62708-251-8
... transition from elastic to plastic behavior, and the point at which plastic deformation actually begins is difficult to define with precision. The transition from elastic to plastic deformation is illustrated in Fig. 12.6 . When a specimen is loaded into the plastic range and then unloaded, the elastic...
Image
Published: 30 November 2013
Fig. 1 General stress-strain curve showing elastic and plastic portions of a typical curve. Area marked “Yield” is the area of transition from elastic to plastic deformation. Yield strength, yield point, elastic limit, and proportional limit are all in this area. See Glossary for specific More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.htpa.t53310067
EISBN: 978-1-62708-346-1
... in accordance with the Hertzian equations. Stage 2: With the impact, the elastic boundary (flow stress) of the metal is exceeded, plastic deformation sets in, and the impact can no longer be regarded as purely elastic. Plastic deformation of this kind already takes place in the case of very weak impact...
Series: ASM Technical Books
Publisher: ASM International
Published: 15 June 2021
DOI: 10.31399/asm.tb.mpktmse.t56010001
EISBN: 978-1-62708-384-3
... to determine when yielding begins. It also explains how to determine other properties via tensile tests, including ductility, toughness, and modulus of resilience. elastic modulus extensometers impact strength linear elastic fracture toughness plastic deformation properties Poisson's ratio tensile...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040051
EISBN: 978-1-62708-300-3
... is a law defining the limit of elasticity or the start of plastic deformation under any possible combination of stresses. It can be expressed by f(σ ij ) = C (constant). For isotropic materials, plastic yielding can depend only on the magnitude of the principal stresses; i.e., the yield criteria...
Image
Published: 30 November 2013
Fig. 4 Typical stress-strain diagram showing different regions of elastic and plastic behavior. (a) Elastic region in which original size and shape will be restored after release of load. (b) Region of permanent deformation but without localized necking. (c) Region of permanent deformation More
Image
Published: 01 November 2012
Fig. 4 Typical stress-strain diagram showing different regions of elastic and plastic behavior. (a) Elastic region in which original size and shape will be restored after release of load. (b) Region of permanent deformation but without localized necking. (c) Region of permanent deformation More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780216
EISBN: 978-1-62708-281-5
... of a plastic component can take many forms. There are situations in which excessive elastic deformation will constitute failure. A plastic automotive bumper is a good example of this class of failure. A bumper system is required to absorb specified levels of energy while simultaneously protecting the rest...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060049
EISBN: 978-1-62708-261-7
... Abstract This chapter introduces the concepts of mechanical properties and the various underlying metallurgical mechanisms that can be used to alter the strength of materials. The mechanical properties discussed include elasticity, plasticity, creep deformation, fatigue, toughness, and hardness...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060115
EISBN: 978-1-62708-355-3
.... Because the plastic strain associated with tensile deformation of metals and alloys is typically several orders of magnitude greater than the accompanying elastic strain, plasticity or dislocation motion is very important to the development of toughness. This is illustrated by the stress-strain curves...