Skip Nav Destination
Close Modal
Search Results for
die geometry
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 282 Search Results for
die geometry
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 August 2012
Image
Published: 01 August 2012
Image
Published: 01 August 2012
Fig. 3.20 Tool geometry of V-die bending ( a p = punch tip angle, a d = V-die angle). Source: Ref 3.25
More
Image
Published: 01 December 2006
Fig. 7.60 Cross-sectional geometry of the ports for the die aperture of a two-cavity die. Source: Ames
More
Image
Published: 01 August 2012
Fig. 2.14 Tool geometry of V-die bending used in studies conducted at the Engineering Research Center for Net Shape Manufacturing (in cooperation with Cincinnati Inc.)
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500001
EISBN: 978-1-62708-317-1
... Abstract This chapter provides an overview of the blanking process and the forces and stresses involved. It discusses the factors that affect part quality and tool life, including punch and die geometry, stagger, clearance, and wear as well as punch velocities, misalignment, and snap-thru...
Abstract
This chapter provides an overview of the blanking process and the forces and stresses involved. It discusses the factors that affect part quality and tool life, including punch and die geometry, stagger, clearance, and wear as well as punch velocities, misalignment, and snap-thru forces. It also discusses ultra-high-speed blanking, fine blanking, and shearing, and the use finite-element simulations to predict part edge quality.
Image
Published: 01 March 2000
Fig. 10 Variation of exit temperature with ram speed for two different outside perimeters of the die geometry on 6063 aluminum alloy
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500073
EISBN: 978-1-62708-317-1
... of forming stations, tool geometry for each station (punch and die diameter, punch corner, and die corner radii), draw depth for each forming station, and blank holder force (if needed) at each station. The challenging tasks in designing a process sequence are how to determine the minimum number of required...
Abstract
This chapter presents two case studies; one demonstrating the use of finite-element analysis (FEA) in the design of a progressive die forming operation, the other explaining how software simulations helped engineers reduce thinning and eliminate cracking and deformation observed in clutch hubs formed using a three-step transfer die process. It also discusses the role of FEA and commercial software in the design of progressive dies.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040193
EISBN: 978-1-62708-300-3
... in terms of geometric parameters, process parameters, and material parameters [ SFTC, 2002 ]. 16.3.1 Geometric Parameters The starting workpiece geometry and the die geometry need to be defined in a closed-die forging modeling. Depending on its geometrical complexity, a forging process can...
Abstract
This chapter discusses the use of finite-element modeling in forging design. It describes key modeling parameters and inputs, mesh generation and computation time, and process modeling outputs such as metal flow, strain rate, loading profiles, and microstructure. It also includes a variety of application examples.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040257
EISBN: 978-1-62708-300-3
... Abstract This chapter discusses the processes of isothermal and hot-die forging and their use in producing aerospace components. It explains how isothermal forging was developed to provide a near-net shape component geometry and well-controlled microstructures and properties with accurate...
Abstract
This chapter discusses the processes of isothermal and hot-die forging and their use in producing aerospace components. It explains how isothermal forging was developed to provide a near-net shape component geometry and well-controlled microstructures and properties with accurate control of the working temperature and strain rate. It describes the materials typically used as well as equipment and tooling, die heating procedures, part separation techniques, and postforging heat treatment.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400105
EISBN: 978-1-62708-316-4
... properties, the blank thickness, the punch and die geometry, and the lubrication conditions. Maximum limiting draw ratio values (approximate) for some common materials Table 8.1 Maximum limiting draw ratio values (approximate) for some common materials Material LDR max Steel sheet...
Abstract
This chapter provides a detailed analysis of the deep drawing process. It begins by explaining that different areas of the workpiece are subjected to different types of forces and loads, equating to five deformation zones. After describing the various zones, it discusses the effect of key process parameters including the draw ratio, material properties, geometry, interface conditions, equipment operating speed, and tooling. It then walks through the steps involved in predicting stress, strain, and punch force using the slab method and finite element analysis and presents the results of simulations conducted to assess the influence of blank diameter, thickness, and holding force as well as strain-hardening and strength coefficients. It also discusses the cause of defects in deep drawn rectangular cups and presents the case study of a deep drawn rectangular cup made from an aluminum blank.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500179
EISBN: 978-1-62708-317-1
... of the bent tube is designed correctly, not only can the tube be easily oriented into the hydroformed die cavity, but also the quality of the formed part can be improved ( Ref 9.14 ). More importantly, correct design of the geometry of the bend will reduce local consumption of material formability, which...
Abstract
Tube hydroforming is a material-forming process that uses pressurized fluid to plastically deform tubular materials into desired shapes. It is widely used in the automotive industry for making exhaust manifolds, catalytic converters, shock absorber housings, and other parts. This chapter discusses the basic methods of tube hydroforming and the underlying process mechanics. It explains how to determine if a material is a viable candidate and whether it can withstand preforming or bending operations. It describes critical process parameters, such as interface pressure, surface expansion and contraction, and sliding velocity, and how they influence friction, lubrication, and wear. The chapter also provides information on forming presses and tooling, tube hydropiercing, and the use of finite elements to determine optimal processing conditions and loading paths.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2000
DOI: 10.31399/asm.tb.aet.t68260029
EISBN: 978-1-62708-336-2
... both cooling of the billet in air and heat conduction between the billet and the container before extrusion started. They studied the effects of several factors, such as materials properties, friction conditions, ram velocity, extrusion ratio, and die geometry. Castle and Sheppard ( Ref 7 ) developed...
Abstract
This chapter provides an overview of the thermodynamics of extrusion. It begins by presenting a thermodynamic model of the extrusion process expressed in the form of finite difference equations. It then explains how the model accounts for multiple sources of heat generation, the influence of principal variables on temperature rise, and different types of temperature measurements. It also discusses the benefits of isothermal extrusion and how it achieves consistent mechanical properties in extruded components.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400005
EISBN: 978-1-62708-316-4
... of the lubricant used. Cooling/heating of sheet also tends to increase/decrease its flow stress. Thus, die temperature may also affect the sheet forming process. Deformation Zone and Mechanics of Deformation When material is deformed plastically, metal flow is influenced mainly by: (a) tool geometry, (b...
Abstract
This chapter provides a concise, design-oriented summary of more than 30 sheet forming processes within the categories of bending and flanging, stretch forming, deep drawing, blank preparation, and incremental and hybrid forming. Each summary includes a description and diagram of the process and a bullet-point list identifying relevant equipment, materials, variations, and applications. The chapter also discusses critical process variables, interactions, and components and the classification of sheet metal parts based on geometry.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2000
DOI: 10.31399/asm.tb.aet.t68260087
EISBN: 978-1-62708-336-2
... Abstract This chapter familiarizes readers with the design, configuration, and function of tooling and dies used to extrude aluminum alloys. It discuses basic design considerations, including the geometry, location, and orientation of die openings; allowances for thermal shrinkage, stretching...
Abstract
This chapter familiarizes readers with the design, configuration, and function of tooling and dies used to extrude aluminum alloys. It discuses basic design considerations, including the geometry, location, and orientation of die openings; allowances for thermal shrinkage, stretching, and deflection; and the length and profile of bearing surfaces. It outlines the steps and processes involved in die making, describes the selection and treatment of die materials, and examines the factors that influence friction and wear. It also discusses the general procedures for on-site die correction.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040007
EISBN: 978-1-62708-300-3
... equipment, (6) product, (7) plant environment Tooling/Dies Tool geometry Surface conditions, lubrication Material/heat treatment/hardness Temperature Conditions at the Die/Billet Interface Lubricant type and temperature Insulation and cooling characteristics...
Abstract
This chapter explains that the key to forging is understanding and controlling metal flow and influential factors such as tool geometry, the mechanics of interface friction, material characteristics, and thermal conditions in the deformation zone. It also reviews common forging processes, including closed-die forging, extrusion, electrical upsetting, radial forging, hobbing, isothermal forging, open-die forging, orbital forging, and coining.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040295
EISBN: 978-1-62708-300-3
... or TiAlN in cold forging, that improves the hardness of the surface while leaving the bulk of the die relatively soft [ Dahl et al., 1998 ]. Die Design In hot forging, die design parameters, such as flash geometry, fillet radii, draft angles, and die face contact area, influence die wear and fatigue...
Abstract
This chapter addresses the issue of die failures in hot and cold forging operations. It describes failure classifications, fatigue fracture and wear mechanisms, analytical wear models, and the various factors that limit die life. It also includes several case studies in which finite-element modeling is used to predict die failure and extend die life.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040185
EISBN: 978-1-62708-300-3
... Abstract This chapter presents a relatively simple method for estimating forging loads and flow stresses. The method uses the slab analysis technique and accounts for material properties, friction and heat transfer, press ram speed, forging geometry, and billet and die temperatures. The chapter...
Abstract
This chapter presents a relatively simple method for estimating forging loads and flow stresses. The method uses the slab analysis technique and accounts for material properties, friction and heat transfer, press ram speed, forging geometry, and billet and die temperatures. The chapter demonstrates the use of the method and compares the results with measured values.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500133
EISBN: 978-1-62708-317-1
... (Conducted at the Center for Precision Forming/The Ohio State University) An example part and die geometry was chosen from Ref 7.20 . The die geometry used for simulation is given in Fig. 7.22 . Fig. 7.22 Die geometry for hat shape. All dimensions are in meters. Source: Ref 7.20 During...
Abstract
Hot stamping is a forming process for ultrahigh-strength steels (UHSS) that maximizes formability while minimizing springback. This chapter covers several aspects of hot stamping, including the methods used, the effect of process variables, and the role of finite-element analysis in process development and die design. It also discusses heating methods, cooling mechanisms, and the role of coatings in preventing oxidation.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040159
EISBN: 978-1-62708-300-3
..., and titanium alloys. impression-die forging process design 14.1 Introduction In impression-die forging, two or more dies are moved toward each other to form a metal billet that has a relatively simple geometry to obtain a more complex shape. Usually, the billet is heated to an appropriate...
Abstract
This chapter discusses the factors involved in the design of impression-die forging systems. It begins by presenting a flow chart illustrating the basic steps in the forging design process and a block diagram that shows how key forging variables are related. It then describes the requirements of various forging alloys, the influence of machine operating parameters, and production challenges related to lot tolerances and shape complexity. The chapter also covers the design of finisher dies, the prediction of forging stresses and loads, and the design of preform dies for steel, aluminum, and titanium alloys.