Skip Nav Destination
Close Modal
Search Results for
design-related failures
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 669 Search Results for
design-related failures
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780189
EISBN: 978-1-62708-268-6
... documentation and other related forms, with little or no guidance on how to analyze failures. The approach outlined in this book can be used as the basis of a failure analysis process. The process should include the following steps: Designate a failure analysis team, with representatives from engineering...
Abstract
At the conclusion of a systems failure analysis, the people involved should have a much more in-depth understanding of how the system is supposed to work. The analysis should help understand shortfalls in the design, production, testing, and use of the system. The failure analysis team will have identified other potential failure causes and actions required to preclude future failures. This is valuable knowledge, and it should not be set aside or ignored when the failure analysis team concludes its activities. This chapter is a brief account of the creation of failure analysis libraries, of process guidelines based on previous failure analyses, and of troubleshooting and repair guidelines. Also provided is a listing of the various steps that should be included in a failure analysis procedure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430147
EISBN: 978-1-62708-253-2
... to various defects Material defects due to selection of wrong material Forming and welding defects Design defects Failures related to cleaning and maintenance Each one of these failure mechanisms is discussed in the following sections of this chapter along with relevant case studies...
Abstract
This chapter provides an outline of the failure modes and mechanisms associated with most boiler tube failures in coal-fired power plants. Primary categories include stress rupture failures, water-side corrosion, fire-side corrosion, fire-side erosion, fatigue, operation failures, and insufficient quality control.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630xvi
EISBN: 978-1-62708-270-9
... is necessarily due to poor design or manufacturing flaws. Failures can be caused by a very large variety of factors, and many failures are the result of multiple related factors. In a larger, more encompassing context, failure can be defined as the inability of a component, machine, process, or culture/thinking...
Abstract
Designs and materials continue to become more complex, with novel technologies developed to create them, and novel instruments invented to analyze them. Engineers at all stages of the design and manufacturing process should appreciate the reasons why formal failure analysis is performed. This chapter describes why failure analysis is conducted and outlines the responsibilities of the failure analyst.
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780081
EISBN: 978-1-62708-268-6
... Design Changes Design changes are usually noted in drawing or specification revisions, so if a design change occurs, finding it is usually straightforward. The failure analysis team should review all relevant design documentation to determine if any changes related to hypothesized failure causes...
Abstract
This chapter targets areas that determine if a change occurred and if the change induced the failure: change or what's different analysis. It describes the different sources of changes that induce process deficiencies: design, process, test and inspection, environmental, supplier lot, aging, and supplier changes. The chapter presents an example of a cluster bomb failure to explain how the failure analysis team found and corrected the failure cause.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490001
EISBN: 978-1-62708-340-9
... ) Item Level I Level II Level III Feature Least detail More detail Most detail Failure history Plant records Plant records Plant records Dimensions Design or nominal Measured or nominal Measured Condition Records or nominal Inspection Detailed inspection Temperature...
Abstract
The ability to accurately assess the remaining life of components is essential to the operation of plants and equipment, particularly those in service beyond their design life. This, in turn, requires a knowledge of material failure modes and a proficiency for predicting the near and long term effects of mechanical, chemical, and thermal stressors. This chapter presents a broad overview of the types of damage to which materials are exposed at high temperatures and the approaches used to estimate remaining service life. It explains how operating conditions in power plants and oil refineries can cause material-related problems such as embrittlement, creep, thermal fatigue, hot corrosion, and oxidation. It also discusses the factors and considerations involved in determining design life, defining failure criteria, and implementing remaining-life-assessment procedures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060091
EISBN: 978-1-62708-355-3
... concepts of mechanical design and its general relation with the properties derived from tensile testing. It begins with a description of the basic objective of product design. Next, a simple tie bar is used to illustrate the application of mechanical property data to material selection and design...
Abstract
This chapter introduces the basic concepts of mechanical design and its general relation with the properties derived from tensile testing. It begins with a description of the basic objective of product design. Next, a simple tie bar is used to illustrate the application of mechanical property data to material selection and design and to highlight the general implications for mechanical testing. Material subjected to the basic stress conditions is considered to establish design approaches and mechanical test methods, first in static loading and then in dynamic loading and aggressive environments. The chapter then briefly describes design criteria for some basic property combinations such as strength, weight, and costs as well as stiffness in tension. Additionally, it describes the processes involved in mechanical testing for stress at failure and elastic modulus. Finally, the chapter examines the correlation between hardness and strength.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130503
EISBN: 978-1-62708-284-6
... Abstract Failure analysis of steel welds may be divided into three categories. They include failures due to design deficiencies, weld-related defects usually found during inspection, and failures in field service. This chapter emphasizes the failures due to various discontinuities in the steel...
Abstract
Failure analysis of steel welds may be divided into three categories. They include failures due to design deficiencies, weld-related defects usually found during inspection, and failures in field service. This chapter emphasizes the failures due to various discontinuities in the steel weldment. These include poor workmanship, a variety of hydrogen-assisted cracking failures, stress-corrosion cracking, fatigue, and solidification cracking in steel welds. Hydrogen-assisted cracking can appear in four common forms, namely underbead or delayed cracking, weld metal fisheyes, ferrite vein cracking, and hydrogen-assisted reduced ductility.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610001
EISBN: 978-1-62708-303-4
..., if other time-related failure modes occur concomitantly with repeated loads and interact synergistically, then the task becomes even more challenging. Inasmuch as humans always desire to use more goods and place more demands on the things we can design and produce, the challenge of fatigue is always going...
Abstract
This chapter provides a brief review of industry’s battle with fatigue and fracture and what has been learned about the underlying failure mechanisms and their effect on product lifetime and service. It recounts some of the tragic events that led to the discovery of fatigue and brittle fracture and explains how they reshaped design philosophies, procedures, and tools. It also discusses the influence of material and manufacturing defects, operating conditions, stress concentration and intensity, temperature and pressure, and cyclic loading, all of which play a role in the onset of fatigue cracking and thus should be considered when predicting useful product life.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250019
EISBN: 978-1-62708-345-4
... Fig. 1 Schematic showing three lubrication regimes Abstract This chapter reviews the knowledge of the field of gear tribology and is intended for both gear designers and gear operators. Gear tooth failure modes are discussed with emphasis on lubrication-related failures. The chapter...
Abstract
This chapter reviews the knowledge of the field of gear tribology and is intended for both gear designers and gear operators. Gear tooth failure modes are discussed with emphasis on lubrication-related failures. The chapter is concerned with gear tooth failures that are influenced by friction, lubrication, and wear. Equations for calculating lubricant film thickness, which determines whether the gears operate in the boundary, elastohydrodynamic, or full-film lubrication range, are given. Also, given is an equation for Blok's flash temperature, which is used for predicting the risk of scuffing. In addition, recommendations for lubricant selection, viscosity, and method of application are discussed. The chapter discusses in greater detail the applications of oil lubricant. Finally, a case history demonstrates how the tribological principles discussed in the chapter can be applied practically to avoid gear failure.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110262
EISBN: 978-1-62708-247-1
... Abstract Over the revolutionary era of semiconductor technology, Computer-Aided Design Navigation (CADNav) tools have played an increasingly critical role in silicon debug and failure analysis (FA) in efforts to improve manufacturing yield while reducing time-to-market for integrated circuit...
Abstract
Over the revolutionary era of semiconductor technology, Computer-Aided Design Navigation (CADNav) tools have played an increasingly critical role in silicon debug and failure analysis (FA) in efforts to improve manufacturing yield while reducing time-to-market for integrated circuit (IC) products. This article encompasses the key principles of CADNav for various aspects of semiconductor FA and its importance for improved yield and profitability. An overview of the required input data and formats are described for both IC and package devices, along with key considerations and best practices recommended for fast fault localization, accurate root cause analysis, FA equipment utilization, efficient cross-team collaboration, and database management. Challenges with an FA lab ecosystem are addressed by providing an integrated database and software platform that enable design layout and schematic analysis in the FA lab for quick and accurate navigation and cross-tool collaboration.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630001
EISBN: 978-1-62708-270-9
... investigative procedure using the scientific method to identify the causes of a failure. “Forensic engineering” is often used as a synonym, but this term is more appropriate for litigation-based investigations. Analysis of failures is an integral part of design and manufacturing processes. In addition...
Abstract
Failure analysis is a systematic investigative procedure using the scientific method to identify the causes of a failure. This chapter begins by exploring what failure analysis is followed by a section describing the sequence of stages in the investigation and analysis of failure and the three principles that must be carefully followed during the analysis. It then provides information on the normal location of fracture and concludes with a list of questions to ask about fractures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.aceg.t68410253
EISBN: 978-1-62708-280-8
.... It ends with an overview of the contents of a program launch manual. product launch process product-process flow diagram process failure mode and effects analysis manufacturing control plan engineering design aluminum castings 10.1 Development Phases and Critical Elements...
Abstract
This chapter is a detailed account of various factors pertinent to the development and launch of a product. It begins by describing the five phases in the product launch process, namely product design and development, process design and development, product and process validation, product launch, and continuous improvement. This is followed by sections covering product-process flow diagrams and also the process elements considered for process failure mode and effects analysis. Some of the aspects covered by the engineering specifications to meet the product performance requirements are then reviewed. Details on product validation requirements and definitions of parameters related to the launch process are also provided. The chapter discusses the purpose of manufacturing control plan, along with an illustration of a manufacturing control plan outlined for a safety-critical suspension casting. It ends with an overview of the contents of a program launch manual.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110666
EISBN: 978-1-62708-247-1
... Abstract This chapter surveys both basic quality and basic reliability concepts as an introduction to the failure analysis professional. It begins with a section describing the distinction between quality and reliability and moves on to provide an overview of the concept of experiment design...
Abstract
This chapter surveys both basic quality and basic reliability concepts as an introduction to the failure analysis professional. It begins with a section describing the distinction between quality and reliability and moves on to provide an overview of the concept of experiment design along with an example. The chapter then discusses the purposes of reliability engineering and introduces four basic statistical distribution functions useful in reliability engineering, namely normal, lognormal, exponential, and Weibull. It also provides information on three fundamental acceleration models used by reliability engineers: Arrhenius, Eyring, and power law models. The chapter concludes with information on failure rates and mechanisms and the two techniques for uncovering reliability issues, namely burn-in and outlier screening.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430351
EISBN: 978-1-62708-253-2
... be the cause of failure of electric resistance welded tubes for boiler-related applications. Flaws or negligence in the basic design of the tubes can also lead to tube failure. For example, use of an elbow instead of a bend with a generous radius can be a cause of erosion or erosion-corrosion damage...
Abstract
Boiler tube failures associated with material defects are often the result of poor quality control, whether in primary production, on-site fabrication, storage and handling, or installation. This chapter examines quality-related failures stemming from compositional and structural defects, forming and welding defects, design defects, improper cleaning methods, and ineffective maintenance. It also includes case studies and illustrations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270102
EISBN: 978-1-62708-301-0
... Abstract A design modification intended to reduce dowel bolt failures in an aircraft engine proved ineffective, prompting an investigation to determine what was causing the bolts to break. As the chapter explains, failure specimens were examined under various levels of magnification...
Abstract
A design modification intended to reduce dowel bolt failures in an aircraft engine proved ineffective, prompting an investigation to determine what was causing the bolts to break. As the chapter explains, failure specimens were examined under various levels of magnification and subjected to chemical analysis and low-cycle fatigue tests. Based on their findings, investigators concluded that the bolts failed due to fatigue compounded by excessive clearances and poor surface finishes. The chapter provides a number of recommendations addressing these issues and related concerns.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130087
EISBN: 978-1-62708-284-6
... failures. In general, sudden onset and elastic failures are a result of the combination of the design or actual geometry and the elastic modulus being insufficient to sustain the loading conditions. Sudden onset and elastic deformation damage is only secondarily related to the yield strength. The modulus...
Abstract
This chapter reviews various ways to classify failure categories and summarizes the basic types, causes, and mechanisms of damage, with particular consideration given to whether the likelihood of the types of damage can or cannot be influenced by the heat treating of steel parts. The classical organization for types of damage (failures) is as follows: deformation, fracture, wear, corrosion or other environmental damage, and multiple or complex damage. The chapter also provides some examples of lack of conformance to specification that may at first look like the heat treater did something wrong, but where other contributing factors made it difficult or impossible for the heat treater to meet the specification.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030235
EISBN: 978-1-62708-282-2
... be considering a certain piece of equipment without knowledge of the fact that there may be unusual shapes, moving parts, or environmental issues. A lack of attention to design detail causes many premature failures by corrosion-related processes. All too often, the designer will have in mind one thing, which...
Abstract
This chapter focuses on various factors to be considered at design stage to minimize corrosion. It begins by providing information on design considerations and general corrosion awareness. This is followed by a description of several factors influencing materials-component failure. Details on design and materials selection, which assist in controlling corrosion, are then provided. The chapter ends with a discussion on the design factors that influence corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630257
EISBN: 978-1-62708-270-9
... be prevented by specifying proper design and appropriate material properties, along with careful attention to manufacturing and quality control procedures and with other factors. However, a fracture mechanics approach can often be used to determine the key factors leading to the failure. Fracture mechanics can...
Abstract
Fracture mechanics is a well-developed quantitative approach to the study of failures. This chapter discusses fracture toughness and fracture mechanics, linear-elastic fracture mechanics, and modes of loading. The discussion also covers plane strain and stress and crack growth kinetics. The chapter presents a case history that illustrates the use of fracture mechanics in failure analysis. An appendix provides a more detailed discussion of fracture mechanics concepts.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130255
EISBN: 978-1-62708-284-6
... on the effects of materials and quench process design on distortion of steel during heat treating. Details on stress raisers and their role in quench cracking are then presented. The chapter ends with various selected case histories of failures attributed to the quenching process. quenching phase...
Abstract
This chapter provides an overview of the fundamental material- and process-related parameters of quenching on residual stress, distortion control, and cracking. It begins with a description of phase transformations during heating and quenching of steel. This is followed by a section on the effects of materials and quench process design on distortion of steel during heat treating. Details on stress raisers and their role in quench cracking are then presented. The chapter ends with various selected case histories of failures attributed to the quenching process.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110025
EISBN: 978-1-62708-247-1
... assembly. This trend includes the integration of 3D device build ups, such as stacked-die devices and package-on-packages (PoP). The resulting design realizations are setting a new standard to quality and reliability and in consequence the related failure analysis. Physical root causes for defective...
Abstract
In embedded systems, the separation between system level, board level, and individual component level failure analysis is slowly disappearing. In order to localize the initial defect area, prepare the sample for root cause analysis, and image the exact root cause, the overall functionality has to be maintained during the process. This leads to the requirement of adding additional techniques that help isolate and image defects that are buried deeply within the board structure. This article demonstrates an approach of advanced board level failure analysis by using several non-destructive localization techniques. The techniques considered for advanced fault isolation are magnetic current imaging for shorts and opens; infrared thermography for electrical shorts; time-domain-reflectometry for shorts and opens; scanning acoustic microscopy; and 2D/3D X-Ray microscopy. The individual methods and their operational principles are introduced along with case studies that will show the value of using them on board level defect analysis.
1