Skip Nav Destination
Close Modal
Search Results for
deformation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1285 Search Results for
deformation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240017
EISBN: 978-1-62708-251-8
... an important role in processes such as deformation, annealing, precipitation, diffusion, and sintering. All defects and imperfections can be conveniently classified under four main divisions: point defects, line defects, planar defects, and volume defects. This chapter provides a detailed discussion...
Abstract
In a perfect crystalline structure, there is an orderly repetition of the lattice in every direction in space. Real crystals contain a considerable number of imperfections, or defects, that affect their physical, chemical, mechanical, and electronic properties. Defects play an important role in processes such as deformation, annealing, precipitation, diffusion, and sintering. All defects and imperfections can be conveniently classified under four main divisions: point defects, line defects, planar defects, and volume defects. This chapter provides a detailed discussion on the causes, nature, and impact of these defects in metals. It also describes the mechanisms that cause plastic deformation in metals.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240279
EISBN: 978-1-62708-251-8
... Abstract This chapter describes the general characteristics of two commonly classified metalworking processes, namely hot working and cold working. Primary metalworking processes, such as the bulk deformation processes used to conduct the initial breakdown of cast ingots, are always conducted...
Abstract
This chapter describes the general characteristics of two commonly classified metalworking processes, namely hot working and cold working. Primary metalworking processes, such as the bulk deformation processes used to conduct the initial breakdown of cast ingots, are always conducted hot. Secondary processes, which are used to produce the final product shape, are conducted either hot or cold. The chapter discusses the primary objectives, principal types, advantages, and disadvantages of both primary and secondary metalworking processes. They are rolling, forging, extrusion, sheet metal forming processes, blanking and piercing, bending, stretch forming, drawing, rubber pad forming, and superplastic forming.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410213
EISBN: 978-1-62708-265-5
... This chapter discusses the stress-strain response of ferritic microstructures and its influence on tensile deformation, strain hardening, and ductile fracture of carbon steels. It describes the ductile-to-brittle transition that occurs in bcc ferrite, the effects of aging and grain size...
Abstract
This chapter discusses the stress-strain response of ferritic microstructures and its influence on tensile deformation, strain hardening, and ductile fracture of carbon steels. It describes the ductile-to-brittle transition that occurs in bcc ferrite, the effects of aging and grain size on strength and toughness, continuous and discontinuous yielding behaviors, and dispersion and solid-solution strengthening processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410405
EISBN: 978-1-62708-265-5
... in low-carbon steels. It also discusses the effect of tempering temperature on the mechanical behavior and deformation properties of medium-carbon steels. deformation fracture microstructure tempering CHAPTER 16, “Hardness and Hardenability,” and Chapter 17, “Tempering of Steel...
Abstract
Steels with martensitic and tempered martensitic microstructures, though sometimes perceived as brittle, exhibit plasticity and ductile fracture behavior under certain conditions. This chapter describes the alloying and tempering conditions that produce a ductile form of martensite in low-carbon steels. It also discusses the effect of tempering temperature on the mechanical behavior and deformation properties of medium-carbon steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740103
EISBN: 978-1-62708-308-9
... Abstract This chapter discusses bulk deformation processes and how they are used to reshape metals and refine solidification structures. It begins by describing the differences between hot and cold working along with their respective advantages. It then discusses various forging methods...
Abstract
This chapter discusses bulk deformation processes and how they are used to reshape metals and refine solidification structures. It begins by describing the differences between hot and cold working along with their respective advantages. It then discusses various forging methods, including open-die and closed-die forging, hot upset and roll forging, high-energy-rate forging, ring rolling, rotary swaging, radial and orbital forging, isothermal and hot-die forging, precision forging, and cold forging. The chapter also includes information on cold and hot extrusion and drawing operations.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040017
EISBN: 978-1-62708-300-3
... Abstract This chapter discusses the role of plastic deformation in forging and the effect of strain and strain rate on metal flow. It demonstrates the use of stress tensors and shows how metal flow can be represented qualitatively by the displacement of volume elements and quantitatively...
Abstract
This chapter discusses the role of plastic deformation in forging and the effect of strain and strain rate on metal flow. It demonstrates the use of stress tensors and shows how metal flow can be represented qualitatively by the displacement of volume elements and quantitatively by the distribution of velocity components and strain rates. It describes the conditions associated with homogeneous deformation in a frictionless upset forging and explains how they can also be obtained using engineering and true stress-strain curves.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040051
EISBN: 978-1-62708-300-3
.... It then explains how to determine the onset of yielding, which corresponds to the start of plastic deformation and the flow of metal within the workpiece. The chapter then goes on to present two important yield criteria, one based on shear stress (Tresca criterion), the other on distortion energy (von Mises...
Abstract
This chapter covers the fundamentals of metal flow and the tools and techniques used to predict and control it. It begins by illustrating the local state of stress in a metal cylinder during upset forging and showing how stress components can be expressed in matrix form. It then explains how to determine the onset of yielding, which corresponds to the start of plastic deformation and the flow of metal within the workpiece. The chapter then goes on to present two important yield criteria, one based on shear stress (Tresca criterion), the other on distortion energy (von Mises criterion). It compares and contrasts the two methods and demonstrates their use as flow rules. It also explains how to calculate effective strain and strain rate and includes a brief discussion on the mechanical energy consumed during deformation.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540047
EISBN: 978-1-62708-309-6
... Abstract This chapter examines the phenomena of deformation and fracture in metals, providing readers with an understanding of why it occurs and how it can be prevented. It begins with a detailed review of tension and compression stress-strain curves, explaining how they are produced and what...
Abstract
This chapter examines the phenomena of deformation and fracture in metals, providing readers with an understanding of why it occurs and how it can be prevented. It begins with a detailed review of tension and compression stress-strain curves, explaining how they are produced and what they reveal about the load-carrying characteristics of engineering materials. It then discusses the use of failure criteria and the determination of yielding and fracture limits. It goes on to describe the mechanisms and appearances of brittle and ductile fractures and stress rupture, providing detailed images, diagrams, and explanations. It discusses the various factors that influence strength and ductility, including grain size, loading rate, and temperature. It also provides information on the origin of residual stresses, the concept of toughness, and the damage mechanisms associated with creep and stress rupture, stress corrosion, and hydrogen embrittlement.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540357
EISBN: 978-1-62708-309-6
... Abstract Deformation within a crystal lattice is governed principally by the presence of dislocations, which are two-dimensional defects in the lattice structure. Slip from shear stress is the most common deformation mechanism within crystalline lattices of metallic materials, although...
Abstract
Deformation within a crystal lattice is governed principally by the presence of dislocations, which are two-dimensional defects in the lattice structure. Slip from shear stress is the most common deformation mechanism within crystalline lattices of metallic materials, although deformation of crystal lattices can also occur by other processes such as twinning and, in special circumstances, by the migration of vacant lattice sites. This appendix describes the notation used to specify lattice planes and directions and discusses the mechanisms of slip and twinning as well as the effect of stacking faults.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400027
EISBN: 978-1-62708-316-4
... Abstract This chapter discusses the fundamentals of plastic deformation and the role of strain and strain rate in sheet metal forming processes. It describes the conditions associated with uniform deformation, the significance of engineering and true strain, the effect of volume constancy...
Abstract
This chapter discusses the fundamentals of plastic deformation and the role of strain and strain rate in sheet metal forming processes. It describes the conditions associated with uniform deformation, the significance of engineering and true strain, the effect of volume constancy on the tensile response of isotropic and anisotropic materials, and how infinitesimal strains or strain rates are used to express and analyze instantaneous deformation and local stain. It also discusses the concept of principal strain and strain paths and explains how to determine, and when to use, equivalent strain and strain rate.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400033
EISBN: 978-1-62708-316-4
... Abstract This chapter discusses the factors that influence the load-deformation relationship at the heart of most metal forming operations. It describes the changes that occur in tensile test samples and the various ways test data can be plotted and analyzed, particularly for design purposes...
Abstract
This chapter discusses the factors that influence the load-deformation relationship at the heart of most metal forming operations. It describes the changes that occur in tensile test samples and the various ways test data can be plotted and analyzed, particularly for design purposes. It discusses the effect of normal and planar anisotropy, the development and use of flow stress curves, and how formability is usually measured and expressed. It explains how formability measurements serve as a guide for process and tool design engineers as well as others. It also discusses the development and use of forming limit curves and the extensive amount of information they provide.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400053
EISBN: 978-1-62708-316-4
... and how hardening laws are used to predict strain-hardening behaviors. elastic strain levy-mises equations plastic deformation sheet metal forming strain hardening strain rate WHEN A MATERIAL is deformed, two types of deformation occur: elastic and plastic. Elastic deformation is always...
Abstract
The design and optimization of sheet metal forming operations is aided by tools and techniques that have been developed and refined over several decades. This chapter covers many of these methods and practices and explains where and how they are used. It begins by showing how the stress state at any point in a material can be expressed in different ways for different purposes. It then compares and contrasts some of the more widely used yield criteria and demonstrates the use of flow rules. It also explains how to calculate power, energy, and effective strain and strain rate and how hardening laws are used to predict strain-hardening behaviors.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480095
EISBN: 978-1-62708-318-8
... Abstract Titanium, like other metals, can be shaped, formed, and strengthened through deformation processes. This chapter describes the structural changes that occur in titanium during deformation and how they can be controlled. It discusses the role of slip, dislocations, and twinning...
Abstract
Titanium, like other metals, can be shaped, formed, and strengthened through deformation processes. This chapter describes the structural changes that occur in titanium during deformation and how they can be controlled. It discusses the role of slip, dislocations, and twinning, the effect of grain size and crystal orientation, the concept of texture strengthening, and the principles of strain hardening and superplasticity. It also discusses the effect of annealing and the difference between recrystallization and neocrystallization processes.
Image
Published: 01 December 2003
Fig. 8 Deformation map (a) used to predict PC part deformation at 82 °C (180 °F). Ê = E ( T , t )/2350 MPa. (b) Comparison of cathode-ray-tube housing creep prediction
More
Image
in Classification and Description of Sheet Metal Forming Operations
> Sheet Metal Forming: Fundamentals
Published: 01 August 2012
Image
Published: 01 July 1997
Fig. 3 Deformation patterns with strength mismatches. (a) Spreading deformation with overmatched weld. (b) Concentrated deformation with an undermatched weld
More
Image
Published: 01 December 2006
Fig. 4.30 Lattice structure during deformation. (a) Elastic deformation. (b) Plastic deformation
More
Image
Published: 01 December 2006
Fig. 5.16 Heating from deformation and shear deformation of the peripheral layer in the adiabatic limiting case (example, AlMgSi0.5: flow stress 25 MPa, billet length: billet Φ = 4, extrusion ratio 30). 1, temperature increase up to the entry into the deformation zone; On exit from the die: 2
More
Image
Published: 01 August 2018
Fig. 11.2 The effect of deformation on “cavities” present in the material. Hydrostatic compressive stresses (σ H ) are essential to cause the consolidation and elimination of “cavities” (pores, shrinkage cavity, etc.). Unfavorable stress states may even lead to rupture during forming. Source
More
Image
Published: 01 August 2018
Fig. 11.37 The effect of the degree of deformation during hot forging (measured as the ratio of transverse cross sections before and after hot forging) on the properties of a Ni-Cr steel produced through conventional ingot casting. Source: Ref 24
More
1