Skip Nav Destination
Close Modal
Search Results for
decomposition
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 304 Search Results for
decomposition
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 October 2011
Fig. 9.7 Temperature-time plot of pearlite decomposition by the competing mechanisms of spheroidization and graphitization in carbon and low-alloy steels. The curve for spheroidization is for conversion of one-half of the carbon in 0.15% C steel to spheroidal carbides. The curve
More
Image
Published: 01 March 2012
Fig. 9.16 Regions of spinodal decomposition and classical nucleation and growth of precipitates. (a) Phase diagram with a miscibility gap. (b) Variation in free energy with composition for the system shown in (a) at temperature T ′. Source: Ref 9.9 as published in Ref 9.10
More
Image
Published: 01 March 2012
Fig. 9.22 Phase decomposition for the Fe-30Mo (at.%). (a) Two-dimensional time development. (b) Three-dimensional simulation. Source: Ref 9.13 as published in Ref 9.10
More
Image
Published: 01 January 1998
Fig. 8-3 IT diagram for decomposition of austenite in an L-type tool steel containing 1.01% C, 0.50% Mn, 0.30% Si, and 1.21% Cr. Specimens were austenitized for 30 min at 815 °C (1500 °F). Source: Ref 3
More
Image
Published: 01 January 1998
Fig. 8-12 Isothermal decomposition of austenite at room temperature in an L2 steel, containing 1.0% C, 1.56% Cr, and 0.20% V, after different quenching treatments. Specimens quenched to temperatures above room temperature were held at temperature for 5 min and air cooled. Source: Ref 13
More
Image
Published: 01 December 2003
Fig. 3 Illustration of the ammonia molecule 2NH 3 and its decomposition
More
Image
in The Various Microstructures of Room-Temperature Steel
> Steel Metallurgy for the Non-Metallurgist
Published: 01 November 2007
Fig. 4.4 Phase diagram analysis of the decomposition of 0.4 and 0.95% C austenite on cooling to the pearlite temperature, 727 °C (1340 °F)
More
Image
in The Various Microstructures of Room-Temperature Steel
> Steel Metallurgy for the Non-Metallurgist
Published: 01 November 2007
Fig. 4.23 Austenite decomposition products for plain carbon steels during isothermal transformation (quenching and holding) at various temperatures below A 1
More
Image
Published: 01 December 2008
Fig. 6.9 The uphill diffusion in the spinodal decomposition. When A-B is strongly repulsive, the diffusion coefficient will take a negative value. (a) The phase diagram. (b) The change in structure and composition. (c) The free energy and the diffusion coefficient
More
Image
in Modeling and Use of Correlations in Heat Treatment
> Principles of the Heat Treatment of Plain Carbon and Low Alloy Steels
Published: 01 December 1996
Fig. 9-1 Schematic illustration of the effect of the decomposition of austenite during cooling on the transformation products present after quenching
More
Image
in Modeling and Use of Correlations in Heat Treatment
> Principles of the Heat Treatment of Plain Carbon and Low Alloy Steels
Published: 01 December 1996
Fig. 9-34 (a) Variation of the beginning and ending times of the decomposition of austenite at 663°C with applied tensile stress. (b) Shift of the isothermal transformation curves as a function of the applied stress. (From E. Gautier, A. Simon, and G. Beck, in Proc. ICOMAT , Nara, Japan (Aug
More
Image
in Modeling and Use of Correlations in Heat Treatment
> Principles of the Heat Treatment of Plain Carbon and Low Alloy Steels
Published: 01 December 1996
Fig. 9-46 Calculated start curve of the decomposition of austenite upon continuous cooling for 4068 steel. (From same source as Fig. 9-45 )
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220193
EISBN: 978-1-62708-259-4
... Abstract Heat treatment is the most common way of altering the mechanical, physical, and even chemical properties of steels. This chapter describes the changes that occur in carbon and low-alloy steels during conventional heat treatments. It explains how austenite decomposition largely defines...
Abstract
Heat treatment is the most common way of altering the mechanical, physical, and even chemical properties of steels. This chapter describes the changes that occur in carbon and low-alloy steels during conventional heat treatments. It explains how austenite decomposition largely defines the final microstructure, and how the associated phase transformations are driven by nucleation and growth processes. It describes diffusionless and diffusive growth mechanisms and provides detailed information on the properties, structure, and behaviors of the transformation products produced, namely martensite and bainite. It also discusses the formation of austenite, the control and measurement of austenitic grain size, the characteristics of ferritic microstructures, and the methods used to classify ferrite morphology.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310055
EISBN: 978-1-62708-326-3
... Abstract The decomposition of austenite, during controlled cooling or quenching, produces a wide variety of microstructures in response to such factors as steel composition, temperature of transformation, and cooling rate. This chapter provides a detailed discussion on the isothermal...
Abstract
The decomposition of austenite, during controlled cooling or quenching, produces a wide variety of microstructures in response to such factors as steel composition, temperature of transformation, and cooling rate. This chapter provides a detailed discussion on the isothermal transformation and continuous cooling transformation diagrams that characterize the conditions that produce the various microstructures. It discusses the mechanism and process variables of quenching of steel, explaining the factors involved in the mechanism of quenching. In addition, the chapter provides information on the causes and characteristics of residual stresses, distortion, and quench cracking of steel.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420171
EISBN: 978-1-62708-310-2
..., and goes on to identify the most common superlattice structures and their corresponding alloy phases. It also discusses the factors that limit the formation of superlattices along with the kinetics of spinodal decomposition and its effect on microstructure development. antiphase boundaries...
Abstract
This chapter explains how the presence of intermediate phases affects the melting behavior of binary alloys and the transformations that occur under different rates of cooling. It begins by examining the phase diagrams of magnesium-lead and copper-zinc, noting some of the complexities associated with intermediate phases. It then discusses the difference between ordered and disordered phases and how they are accounted for on phase diagrams. It describes how the atoms in a disordered solution may arrange themselves into an ordered array, forming a superlattice in the process of cooling, and goes on to identify the most common superlattice structures and their corresponding alloy phases. It also discusses the factors that limit the formation of superlattices along with the kinetics of spinodal decomposition and its effect on microstructure development.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.t64560003
EISBN: 978-1-62708-353-9
... Abstract This chapter describes the two types of Time-Temperature-Transformation (TTT) diagrams used and outlines the methods of determining them. As a precursor to the examination of the decomposition of austenite, it first reviews the phases and microconstituents found in steels...
Abstract
This chapter describes the two types of Time-Temperature-Transformation (TTT) diagrams used and outlines the methods of determining them. As a precursor to the examination of the decomposition of austenite, it first reviews the phases and microconstituents found in steels. This includes a presentation of the iron-carbon phase diagram and the equilibrium phases. The chapter also covers the common microconstituents that form in steels, including the nomenclature used to describe them. The chapter provides a comparison of isothermal and continuous cooling TTT diagrams. These diagrams are affected by the carbon and alloy content and by the prior austenite grain size, and the way in which these factors affect them is examined.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320005
EISBN: 978-1-62708-347-8
.... It addresses the processes involved in the transformation (decomposition) of austenite to achieve various microstructures. austenite transformation iron-carbon phase diagram melting point steel HEATING PURE IRON to its melting point and then allowing it to cool slowly results in an idealized time...
Abstract
The properties of steel are affected markedly as the percentage of carbon varies. This chapter describes the properties of alloys of iron and carbon, including a review of the iron-carbon phase diagram and, in particular, the portion of the diagram relevant to carbon steels. It addresses the processes involved in the transformation (decomposition) of austenite to achieve various microstructures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.lmcs.t66560283
EISBN: 978-1-62708-291-4
... precipitation, the decomposition of retained austenite, and recovery and recrystallization. It also includes images that reveal the characteristic structures produced by tempering medium-carbon hypoeutectoid and hypereutectoid steels as well as the effects of plastic deformation, austenitic grain size...
Abstract
This chapter describes the effects that can be observed by light microscopy when a steel in the hardened condition, consisting of martensite and possibly some retained austenite, is heated at subcritical temperatures. It includes micrographs that illustrate the effect of carbide precipitation, the decomposition of retained austenite, and recovery and recrystallization. It also includes images that reveal the characteristic structures produced by tempering medium-carbon hypoeutectoid and hypereutectoid steels as well as the effects of plastic deformation, austenitic grain size, and temper brittleness.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240053
EISBN: 978-1-62708-251-8
... of free energy that governs whether or not a phase transformation is possible, and then the kinetic considerations that determine the rate at which transformations take place. The chapter also describes important solid-state transformations such as spinodal decomposition and martensitic transformation...
Abstract
This chapter provides a short introduction to phase transformations, namely, the liquid-to-solid phase transformations that occur during solidification and the solid-to-solid transformations that are important in processing, such as heat treatment. It also introduces the concept of free energy that governs whether or not a phase transformation is possible, and then the kinetic considerations that determine the rate at which transformations take place. The chapter also describes important solid-state transformations such as spinodal decomposition and martensitic transformation.
1