Skip Nav Destination
Close Modal
Search Results for
dark-field illumination
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 102 Search Results for
dark-field illumination
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Introduction—Composite Materials and Optical Microscopy
> Optical Microscopy of Fiber-Reinforced Composites
Published: 01 November 2010
Fig. 1.15 Unprepared cross sections of structural foams. (a) Dark-field illumination, 10× objective. (b) Bright-field illumination, 65 mm macrophotograph
More
Image
in The Metallurgical Microscope
> Metallographer’s Guide: Practices and Procedures for Irons and Steels
Published: 01 March 2002
Fig. 5.39 Sketch of a ray diagram showing dark-field illumination. Note that light rays impinging on a scratch on the specimen surface are reflected through the operative lens, while the other rays are reflected away from the lens. Thus, the scratch appears bright, while the remaining surface
More
Image
in The Metallurgical Microscope
> Metallographer’s Guide: Practices and Procedures for Irons and Steels
Published: 01 March 2002
Fig. 5.40 Sketch of a ray diagram for typical dark-field illumination. Note the special dark-field stop that restricts the light path to an annular ring of light, and the special reflecting mirror that reflects that annular ring of light to the outer ring of the objective.
More
Image
Published: 01 December 1984
Figure 4-15 Use of dark-field illumination to reveal annealing twins and substructure in an AISI 1080 sample thermally etched at 2000°F. Austenite grain boundaries and oxide particles are visible using both modes (75 ×).
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400109
EISBN: 978-1-62708-258-7
... Abstract This chapter describes the various features of the metallurgical microscope. Key concepts are defined such as resolving power, the virtual image, bright- and dark-field illumination, numerical aperture, focal length, image contrast, depth of field, and spherical and chromatic...
Abstract
This chapter describes the various features of the metallurgical microscope. Key concepts are defined such as resolving power, the virtual image, bright- and dark-field illumination, numerical aperture, focal length, image contrast, depth of field, and spherical and chromatic aberration. Metallurgical microscope features such as apochromatic objectives, hyperplane oculars, vertical illuminators, counting reticles, widefield oculars, polarization filters, field diaphragms, interferometers, and tungsten-halogen lamps are explained. The optical system, nosepiece, types of objectives (the lens assembly close to the specimen) and eyepieces, and components of the illumination system are all explained. The last part of this chapter describes special procedures involved in using and calibrating the metallurgical microscope.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030089
EISBN: 978-1-62708-349-2
...-light method is shown for reference. (a) Bright-field illumination, 25× objective. (b) Dark-field illumination, 25× objective. (c) Polarized light, 25× objective. (d) Slightly uncrossed polarized light, 25× objective. (e) Epi-fluorescence, 390–440 nm, 25× objective. (f) Transmitted light, Hoffman...
Abstract
The analysis of composite materials using optical microscopy is a process that can be made easy and efficient with only a few contrast methods and preparation techniques. This chapter is intended to provide information that will help an investigator select the appropriate microscopy technique for the specific analysis objectives with a given composite material. The chapter opens with a discussion of macrophotography and microscope alignment, and then goes on to describe various illumination techniques that are useful for specific analysis requirements. These techniques include bright-field illumination, dark-field illumination, polarized-light microscopy, interference and contrast microscopy, and fluorescence microscopy. The chapter also provides a discussion of sample preparation materials such as dyes, etchants, and stains for the analysis of composite materials using optical microscopy.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.t67850267
EISBN: 978-1-62708-260-0
... between amplitude and optical-phase features and how they are revealed using appropriate illumination methods. It compares images obtained using bright field and dark field illumination, polarized and cross-polarized light, and interference-contrast techniques. It also discusses the use of photometers...
Abstract
This chapter discusses the tools and techniques of light microscopy and how they are used in the study of materials. It reviews the basic physics of light, the inner workings of light microscopes, and the relationship between resolution and depth of field. It explains the difference between amplitude and optical-phase features and how they are revealed using appropriate illumination methods. It compares images obtained using bright field and dark field illumination, polarized and cross-polarized light, and interference-contrast techniques. It also discusses the use of photometers, provides best practices and recommendations for photographing structures and features of interest, and describes the capabilities of hot-stage and hot-cell microscopes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400215
EISBN: 978-1-62708-258-7
... (nital and picral and their variations) and tint etchants for carbon and low-alloy steels and cast irons, and basic etchants for stainless steels. Finally, information is provided on different illumination methods (differential interference contrast and dark-field illumination) that can be used...
Abstract
This chapter discusses the important aspects that a metallographer should understand in order to effectively reveal a microstructure. It begins by exploring etching response and how it can be a tool for revealing various microstructural features. The next part of the chapter discusses methods for revealing microstructure in the as-polished (unetched) specimen, then guidelines for selecting and using etchants when needed. The chapter discusses different types of etchants in terms of their ingredients, etching procedure, and major uses. The etchants discussed include basic etchants (nital and picral and their variations) and tint etchants for carbon and low-alloy steels and cast irons, and basic etchants for stainless steels. Finally, information is provided on different illumination methods (differential interference contrast and dark-field illumination) that can be used to highlight certain features in microstructures.
Image
Published: 01 December 2000
Fig. 6.4 Metallographic standards for nitrided case structure. (a) Desired nitrided case showing small amount of grain boundary nitride; acceptable for grade A. Dark field illumination. (b) Nitride case with some continuous grain boundary nitrides; maximum acceptable for grade A. Dark field
More
Image
Published: 01 September 2005
Fig. 5 Metallographic standards for nitrided case structure. (a) Desired nitrided case showing small amount of grain boundary nitride; acceptable for grade A. Dark field illumination. (b) Nitride case with some continuous grain boundary nitrides; maximum acceptable for grade A. Dark field
More
Image
Published: 01 December 2000
Fig. 5.22 Metallographic standard for case carbides in carburized, hardened, and tempered cases. (a) Desired case carbide distribution for grades A and B gears; 4% nital etch, dark field illumination. (b) Scattered carbides in grain boundaries, maximum acceptable for grade A. 4% nital etch
More
Image
in Honeycomb-Cored Sandwich Structure Composites
> Optical Microscopy of Fiber-Reinforced Composites
Published: 01 November 2010
to the composite surface and wiped off with an acetone-dampened cloth. The dye wicked through the composite from the surface, leaving the dye in the microcracks. Dark-field illumination, 5× objective. (b) Top surface of the aramid fiber composite facesheet after failure. DYKEM Steel Red dye was applied
More
Image
in The Art of Revealing Microstructure
> Metallographer’s Guide: Practices and Procedures for Irons and Steels
Published: 01 March 2002
Fig. 8.55 Enamel coating on a low-carbon steel. (a) Bright-field illumination and (b) dark-field illumination. Note the clear delineation of the ferrite grain boundaries in the dark-field image. 2% nital. 100×
More
Image
in The Metallurgical Microscope
> Metallographer’s Guide: Practices and Procedures for Irons and Steels
Published: 01 March 2002
Fig. 5.41 Micrographs of a water-quenched AISI/SAE 4340 steel with a fully martensitic microstructure. Micrograph (a) was taken in bright-field illumination, and micrograph (b) was taken with dark-field illumination. Note the clarity of the prior austenite grain boundaries in the dark-field
More
Image
in Metallographic Technique: Micrography
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Fig. 5.1 Schematic illustration of lighting methods in metallographic optical microscopes: (a) oblique or inclined illumination; (b) normal illumination or illumination parallel to the optical axis—the most common method; (c) dark field illumination.
More
Image
Published: 01 December 1984
Figure 4-14 Optical path in the vertical illuminator of the metallurgical microscope in the dark-field illumination mode. (Courtesy of E. Leitz , Inc.)
More
Image
in Viewing the Specimen Using Reflected-Light Microscopy
> Optical Microscopy of Fiber-Reinforced Composites
Published: 01 November 2010
× objective. (b) Dark-field illumination, 25× objective. (c) Polarized light, 25× objective. (d) Slightly uncrossed polarized light, 25× objective. (e) Epi-fluorescence, 390–440 nm, 25× objective. (f) Transmitted light, Hoffman modulation contrast, 20× objective
More
Image
in Introduction—Composite Materials and Optical Microscopy
> Optical Microscopy of Fiber-Reinforced Composites
Published: 01 November 2010
. Dark-field illumination, 25× objective. (c) Boron fiber polymeric-matrix composite cross section. Bright-field illumination, 50× objective (200× original magnification)
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030159
EISBN: 978-1-62708-349-2
... uncrossed polarized light, 10× objective Fig. 9.6 Microcracks in a glass and thermoplastic fiber hybrid composite. Red penetration dye (Magnaflux Spotcheck SKL-H, Magnaflux Corp.), dark-field illumination, 25× objective Fig. 9.7 Microcracks in a thermoplastic-matrix glass fiber composite...
Abstract
The formation of microcracks in composite materials may arise from static-, dynamic-, impact-, or fatigue-loading situations and also by temperature changes or thermal cycles. This chapter discusses the processes involved in the various methods for the microcrack analysis of composite materials, namely bright-field analysis, polarized-light analysis, contrast dyes analysis, and dark-field analysis. The analysis of microcracked composites using epi-fluorescence is also covered. In addition, the chapter describes the procedures for the determination and recording of microcracks in composite materials.
Image
in Viewing the Specimen Using Reflected-Light Microscopy
> Optical Microscopy of Fiber-Reinforced Composites
Published: 01 November 2010
Fig. 5.14 Thermoplastic fiber-reinforced composite with the microcracks dyed using Magnaflux Spotcheck SKL-H. Dark-field illumination, 25× objective
More
1