Skip Nav Destination
Close Modal
Search Results for
damage tolerance
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 405
Search Results for damage tolerance
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Fracture Control and Damage Tolerance Analysis
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610303
EISBN: 978-1-62708-303-4
... control plans optimized for different circumstances, examines the damage tolerance requirements used by different industries, and discusses various approaches for fatigue design. damage tolerance analysis fracture control proof testing FRACTURE CONTROL is the concerted effort to ensure safe...
Abstract
Fracture control can be defined as a concerted effort to maintain operating safety without catastrophic failure by fracture. It requires an understanding of how cracks affect structural integrity and strength and the time that a crack can grow before it exceeds permissible size. The chapter describes some of methods used to determine maximum permissible crack size and predict growth rates. It explains how the information can then be used to control fractures through periodic inspection, fail-safe features, mandated retirement, and proof testing. It presents a number of fracture control plans optimized for different circumstances, examines the damage tolerance requirements used by different industries, and discusses various approaches for fatigue design.
Book Chapter
Damage Tolerance of Metals
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540215
EISBN: 978-1-62708-309-6
... Abstract This chapter presents a fracture-mechanics-based approach to damage tolerance, accounting for mechanical, metallurgical, and environmental factors that drive crack development and growth. It begins with a review of stress-intensity factors corresponding to a wide range of crack...
Abstract
This chapter presents a fracture-mechanics-based approach to damage tolerance, accounting for mechanical, metallurgical, and environmental factors that drive crack development and growth. It begins with a review of stress-intensity factors corresponding to a wide range of crack geometries, specimen configurations, and loading conditions. The discussion covers two- and three-dimensional cracks as well as the use of correction factors and problem-simplification techniques for dealing with nonstandard configurations. The chapter goes on to describe how fatigue loading affects crack growth rates in each of the three stages of progression. Using images, diagrams, and data plots, it reveals how cracks advance in step with successive stress cycles and explains how fatigue crack growth rates can be determined by examining striations on fracture specimens and correlating their widths with stress profiles. It also describes how material-related factors, load history, corrosion, and temperature affect crack growth rates, and discusses the steps involved in life assessment.
Image
in Fatigue and Fracture of Continuous-Fiber Polymer-Matrix Composites
> Fatigue and Fracture: Understanding the Basics
Published: 01 November 2012
Image
Published: 01 November 2010
Book Chapter
Fatigue and Fracture of Continuous-Fiber Polymer-Matrix Composites
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610377
EISBN: 978-1-62708-303-4
..., damage tolerance, and testing and certification. composite laminates continuous carbon-fiber composites continuous-fiber polymer-matrix composites damage tolerance fatigue failure mechanisms A COMPOSITE MATERIAL can be defined as a combination of two or more materials that results...
Abstract
Unlike metals, in which fatigue failures are due to a single crack that grows to a critical length, the effects of fatigue in composites are much more distributed and varied. As the chapter explains, there are five major damage mechanisms that contribute to the progression of composite fatigue, those being matrix cracking, fiber breaking, crack coupling, delamination initiation, and delamination growth. The chapter describes each mechanism in detail along with related factors. It also discusses the primary differences between composites and metals, the effect of manufacturing defects, damage tolerance, and testing and certification.
Book Chapter
Composite Mechanical Properties
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870373
EISBN: 978-1-62708-314-0
... Abstract This chapter examines the static, fatigue, and damage tolerance properties of glass, aramid, and carbon fiber systems. It also explains how delaminations, voids, porosity, fiber distortion, and fastener hole defects affect impact resistance and strength. aramid fibers carbon...
Abstract
This chapter examines the static, fatigue, and damage tolerance properties of glass, aramid, and carbon fiber systems. It also explains how delaminations, voids, porosity, fiber distortion, and fastener hole defects affect impact resistance and strength.
Book Chapter
Design and Certification Considerations
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870489
EISBN: 978-1-62708-314-0
... Abstract This chapter discusses design and certification considerations, including materials and process selection, the building block approach to certification, design allowables, and design guidelines. It also includes information on damage tolerance and environmental sensitivity...
Abstract
This chapter discusses design and certification considerations, including materials and process selection, the building block approach to certification, design allowables, and design guidelines. It also includes information on damage tolerance and environmental sensitivity.
Book Chapter
Mechanics of Fiber-Reinforced Composites
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540319
EISBN: 978-1-62708-309-6
... loading can lead to delamination, the primary failure mode of most composites, and describes some of the methods that have been developed to improve delamination resistance, assess damage tolerance, determine residual strength, and predict failure modes. composite laminate damage tolerance...
Abstract
This chapter discusses the failure mechanisms associated with fiber-reinforced composites. It begins with a review of fiber-matrix systems and the stress-strain response of unidirectional lamina and both notched and unnotched composite laminate specimens. It then explains how cyclic loading can lead to delamination, the primary failure mode of most composites, and describes some of the methods that have been developed to improve delamination resistance, assess damage tolerance, determine residual strength, and predict failure modes.
Book Chapter
Toughening Methods for Thermoset-Matrix Composites
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030177
EISBN: 978-1-62708-349-2
... in a variety of aircraft applications. To improve the damage tolerance of composite materials even further, an engineering approach to toughening was used to modify the highly stressed interlayer with either a tougher material or through the use of preformed particles, leading to the third generation...
Abstract
The second-generation composite materials were added to increase the strain to failure of the primary phase and/or create a dispersed second phase, thereby enhancing the fracture toughness of the thermosetting matrix. These matrices offered novel design capabilities for composites in a variety of aircraft applications. To improve the damage tolerance of composite materials even further, an engineering approach to toughening was used to modify the highly stressed interlayer with either a tougher material or through the use of preformed particles, leading to the third generation of composite materials. This chapter discusses the development, processes, application, advantages, and disadvantages of dispersed-phase toughening of thermoset matrices. Information on the processes of particle interlayer toughening of composite materials is also included.
Book Chapter
Impact Response of Composites
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030193
EISBN: 978-1-62708-349-2
... 5 ). The impact parameters that influence the damage mechanism are the area, velocity, and mass of the projectile that impinges on the composite part. Material characteristics that affect the damage tolerance and mechanism of failure are the type of fiber, fiber tow structure, fiber volume, weave...
Abstract
As fiber-reinforced polymeric composites continue to be used in more damage-prone environments, it is necessary to understand the response of these materials when subjected to impact from foreign objects. This chapter provides an overview of the analysis methods for impact-damaged composites. It discusses the causes and effects of various failure mechanisms in composite materials. The failure mechanisms covered are brittle-matrix composite failure, tough-matrix composite failure, thermoplastic-matrix composite failure mechanisms, untoughened thermoset-matrix composite failure mechanisms, toughened thermoset-matrix composite failure mechanisms, particle interlayer-toughened composite failure mechanisms, and dispersed-phase, rubber-toughened thermoset-matrix composite failure mechanisms.
Book Chapter
Introduction—Composite Materials and Optical Microscopy
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030001
EISBN: 978-1-62708-349-2
...-carrying constituent of the composite, while the role of the polymer matrix is to transfer the load between fibers as well as provide corrosion resistance, damage tolerance, and thermal and environmental stability ( Ref 1 ). Fiber-reinforced polymeric composites are developed from thermoplastic...
Abstract
This chapter provides a general description of materials and methods for manufacturing high-performance composites. The materials covered are polymer matrices and prepreg materials and the methods include infusion processes, composite-toughening methods, matrix-toughening methods, and dispersed-phase toughening. In addition, the chapter provides information on interlayer-toughened composites and honeycomb or foam structure composite materials. It also discusses the processes in optical microscopy of composite materials.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.9781627083492
EISBN: 978-1-62708-349-2
Book Chapter
Introduction to Fatigue and Fracture
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610001
EISBN: 978-1-62708-303-4
... integrity program (ASIP) in 1958 F-111 aircraft No. 94 wing pivot fitting 1969 Fatigue failure due to material defect in high-strength steel Improved inspection techniques Change from fatigue “safe-life” to damage-tolerant design philosophy Development of materials with improved toughness Seam...
Abstract
This chapter provides a brief review of industry’s battle with fatigue and fracture and what has been learned about the underlying failure mechanisms and their effect on product lifetime and service. It recounts some of the tragic events that led to the discovery of fatigue and brittle fracture and explains how they reshaped design philosophies, procedures, and tools. It also discusses the influence of material and manufacturing defects, operating conditions, stress concentration and intensity, temperature and pressure, and cyclic loading, all of which play a role in the onset of fatigue cracking and thus should be considered when predicting useful product life.
Book Chapter
Introduction to Composite Materials
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870001
EISBN: 978-1-62708-314-0
... to tolerate stress concentrations, as shown in Fig. 1.16 . The characteristically brittle composite material has poor ability to resist impact damage without extensive internal matrix fracturing. Fig. 1.15 Comparison of typical stress-strain curves for a composite laminate and aluminum alloy sheet...
Abstract
This chapter covers the basic aspects of composite materials. It describes the arrangement, form, and function of their constituent materials and explains how they perform better in combination than on their own. It discusses the directional nature of isotropic, anisotropic, and orthotropic materials, the orientation of plies in unidirectional (lamina) and quasi-isotropic (laminate) lay-ups, and the dominant role of fibers in determining strength, stiffness, and other lamina properties. The chapter also compares the engineering attributes of composites with those of metals and includes application examples.
Book Chapter
Fatigue
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240243
EISBN: 978-1-62708-251-8
... the basis for what is known as the damage-tolerance design approach. Finally, in region III, the crack growth rate accelerates, since the fracture toughness of the material is approached, and there is a local tensile overload failure. 14.7 Crack Closure During fatigue cycling, the crack growth...
Abstract
Fatigue failures occur due to the application of fluctuating stresses that are much lower than the stress required to cause failure during a single application of stress. This chapter describes three basic factors that cause fatigue: a maximum tensile stress of sufficiently high value, a large enough variation or fluctuation in the applied stress, and a sufficiently large number of cycles of the applied stress. The discussion covers high-cycle fatigue, low-cycle fatigue, and fatigue crack propagation. The chapter then discusses the stages where fatigue crack nucleation and growth occurs. It describes the most effective methods of improving fatigue life. The chapter also explains the effect of geometrical stress concentrations on fatigue. In addition, it explores the environmental effects of corrosion fatigue, low-temperature fatigue, high-temperature fatigue, and thermal fatigue. Finally, the chapter discusses a number of design philosophies or methodologies to deal with design against fatigue failures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230339
EISBN: 978-1-62708-298-3
... excessive dimensional tolerance problems (except for holes in thick sections) [ Norwood 1984 ]. Typical machining damage ranges from 0.025 to 0.10 mm (0.001 to 0.004 in.) for most machining and may extend to a depth of 0.50 mm (0.02 in.), depending on the machining method [ Gallagher and Hardesty 1989...
Abstract
Beryllium’s machining characteristics are similar to those of heat-treated cast aluminum and chilled cast iron. Like the other materials, it can be turned, milled, drilled, bored, sawed, cut, threaded, tapped, and trepanned with good results. This chapter explains how these machining operations are conducted and describes the effect of tooling materials, cutting speeds, metal-removal rates, and other variables. It also explains how to assess and remove surface damage caused by machining such as microcracks and twins.
Book Chapter
Polymer-Matrix Composites
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550385
EISBN: 978-1-62708-307-2
.... Typically, damage tolerance is a resin-dominated property. The selection of a toughened resin can significantly improve the resistance to impact damage. In addition, S-2 glass and aramid fibers are extremely tough and damage tolerant. During the design phase, it is important to recognize the potential...
Abstract
Polymer-matrix composites are among the lightest structural materials in use today. They are also highly resistant to corrosion and fatigue and their load-carrying capabilities, such as strength and stiffness, can be tailored for specific applications. This chapter discusses the primary advantages and disadvantages of polymer-matrix composites, how they are produced, and how they perform in different applications. It describes the construction of laminates, the fibers and resins used, and the methods by which they are combined. It explains how strength, modulus, toughness, and high-temperature and corrosion behaviors are determined by the orientation, shape, and spacing of fibers, the number of plies, resin properties, and consolidation and forming methods. The chapter also covers secondary fabrication processes, such as thermoforming, machining, and joining, as well as production equipment and product forms, and include guidelines for optimizing tradeoffs when selecting fibers, resins, and production techniques.
Book Chapter
Source Information
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280353
EISBN: 978-1-62708-267-9
... generated. Potential sources of superalloy data Name Aerospace Materials Handbook Mil-Hdbk-5H Damage-Tolerant Handbook Atlas of Stress-Strain Curves Atlas of Creep and Stress-Rupture Curves Atlas of Fatigue Curves Atlas of Stress-Corrosion and Corrosion Fatigue Curves ASM Handbook, Vol 1 20 Materials...
Abstract
This appendix identifies producers, suppliers, and service providers experienced with superalloy materials and applications. It also identifies potential sources of engineering information and property data.
Book Chapter
Nitriding Gears
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320133
EISBN: 978-1-62708-347-8
... was conducted. The equipment alignment of the package was found to be within the allowable tolerance. Also, no visible damage of any component was noticed. This led the inspection toward the internal components of the gearbox. Visual inspection of the disassembled gearbox revealed severe mechanical damage...
Abstract
Nitriding is a case-hardening process used for alloy steel gears and is quite similar to case carburizing. Nitriding of gears can be done in either a gas or liquid medium containing nitrogen. This chapter discusses the processes involved in gas nitriding. It reviews the effects of white layer formation in nitrided gears and presents general recommendations for nitrided gears. The chapter describes the microstructure, overload and fatigue damage, bending-fatigue life, cost, and distortion of nitrided gears. Information on nitriding steels used in Europe and the applications of nitrided gears are also provided. The chapter presents case studies on successful nitriding of a gear and on the failure of nitrided gears used in a gearbox subjected to a load with wide fluctuations.
Book Chapter
Thermoset Composite Fabrication Processes
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870119
EISBN: 978-1-62708-314-0
Abstract
This chapter familiarizes readers with the many and varied thermoset composite fabrication processes and the types of applications for which they were developed. It describes wet lay-up, prepreg lay-up, and low-temperature vacuum bag curing prepreg processes, which are best suited for low-volume, medium-sized and larger parts. It also discusses filament winding and preforming processes (including weaving, knitting, stitching, and braiding) in addition to resin-transfer molding, resin film infusion, and pultrusion.
1