Skip Nav Destination
Close Modal
Search Results for
damage mechanisms
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1073
Search Results for damage mechanisms
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430147
EISBN: 978-1-62708-253-2
..., and insufficient quality control. boiler tubes coal-fired power plants damage mechanisms fatigue fire-side corrosion fire-side erosion operation failures quality control root cause investigation stress rupture failures water-side corrosion 6.1 Introduction In coal-fired power plants, boiler...
Abstract
This chapter provides an outline of the failure modes and mechanisms associated with most boiler tube failures in coal-fired power plants. Primary categories include stress rupture failures, water-side corrosion, fire-side corrosion, fire-side erosion, fatigue, operation failures, and insufficient quality control.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430376
EISBN: 978-1-62708-253-2
... Abstract This chapter lists all of the references cited in the chapters on damage mechanisms. damage mechanisms references References References 6.1 French D.N. , Failures of Boilers and Related Equipment , Failure Analysis and Prevention , Vol 11 , ASM Handbook, ASM...
Abstract
This chapter lists all of the references cited in the chapters on damage mechanisms.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.9781627083409
EISBN: 978-1-62708-340-9
Image
Published: 01 September 2005
Image
in Critique of Predictive Methods for Treatment of Time-Dependent Metal Fatigue at High Temperatures
> Fatigue and Durability of Metals at High Temperatures
Published: 01 July 2009
Fig. 8.12 General shape of damage accumulation curve for continuum damage mechanics. Source: Ref 8.49
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610377
EISBN: 978-1-62708-303-4
... Abstract Unlike metals, in which fatigue failures are due to a single crack that grows to a critical length, the effects of fatigue in composites are much more distributed and varied. As the chapter explains, there are five major damage mechanisms that contribute to the progression of composite...
Abstract
Unlike metals, in which fatigue failures are due to a single crack that grows to a critical length, the effects of fatigue in composites are much more distributed and varied. As the chapter explains, there are five major damage mechanisms that contribute to the progression of composite fatigue, those being matrix cracking, fiber breaking, crack coupling, delamination initiation, and delamination growth. The chapter describes each mechanism in detail along with related factors. It also discusses the primary differences between composites and metals, the effect of manufacturing defects, damage tolerance, and testing and certification.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060173
EISBN: 978-1-62708-343-0
..., and thermomechanical fatigue) damage model, and numerous methods that make use of creep-rupture, crack-growth, and void-growth data. It also discusses the use of continuum damage mechanics and includes examples demonstrating the accuracy of each method as well as the procedures involved. crack growth creep...
Abstract
This chapter provides a detailed review of creep-fatigue analysis techniques, including the 10% rule, strain-range partitioning, several variants of the frequency-modified life equation, damage assessment based on tensile hysteresis energy, the OCTF (oxidation, creep, and thermomechanical fatigue) damage model, and numerous methods that make use of creep-rupture, crack-growth, and void-growth data. It also discusses the use of continuum damage mechanics and includes examples demonstrating the accuracy of each method as well as the procedures involved.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490059
EISBN: 978-1-62708-340-9
..., damage mechanisms, and structural integrity of the test sample. In the sections that follow, it discusses the effects of stress and temperature on creep rate, the difference between diffusional and dislocation creep, and the use of time-temperature-stress parameters for data extrapolation. It explains...
Abstract
This chapter provides a detailed overview of the creep behavior of metals and how to account for it when determining the remaining service life of components. It begins with a review of creep curves, explaining how they are plotted and what they reveal about the operating history, damage mechanisms, and structural integrity of the test sample. In the sections that follow, it discusses the effects of stress and temperature on creep rate, the difference between diffusional and dislocation creep, and the use of time-temperature-stress parameters for data extrapolation. It explains how to deal with time dependent deformation in design, how to estimate cumulative damage under changing conditions, and how to assess the effect of multiaxial stress based on uniaxial test data. It also includes information on rupture ductility, creep fracture, and creep-crack growth and their effect on component life and performance.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490111
EISBN: 978-1-62708-340-9
..., and frequency) and factors such as temperature, material defects, component geometry, and processing history. It provides a detailed overview of the damage mechanisms associated with high-cycle and low-cycle fatigue as well as thermal fatigue, creep-fatigue, and fatigue-crack growth. It also demonstrates...
Abstract
This chapter describes the phenomenological aspects of fatigue and how to assess its effect on the life of components operating in high-temperature environments. It explains how fatigue is measured and expressed and how it is affected by loading conditions (stress cycles, amplitude, and frequency) and factors such as temperature, material defects, component geometry, and processing history. It provides a detailed overview of the damage mechanisms associated with high-cycle and low-cycle fatigue as well as thermal fatigue, creep-fatigue, and fatigue-crack growth. It also demonstrates the use of tools and techniques that have been developed to quantify fatigue-related damage and its effect on the remaining life of components.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540047
EISBN: 978-1-62708-309-6
... images, diagrams, and explanations. It discusses the various factors that influence strength and ductility, including grain size, loading rate, and temperature. It also provides information on the origin of residual stresses, the concept of toughness, and the damage mechanisms associated with creep...
Abstract
This chapter examines the phenomena of deformation and fracture in metals, providing readers with an understanding of why it occurs and how it can be prevented. It begins with a detailed review of tension and compression stress-strain curves, explaining how they are produced and what they reveal about the load-carrying characteristics of engineering materials. It then discusses the use of failure criteria and the determination of yielding and fracture limits. It goes on to describe the mechanisms and appearances of brittle and ductile fractures and stress rupture, providing detailed images, diagrams, and explanations. It discusses the various factors that influence strength and ductility, including grain size, loading rate, and temperature. It also provides information on the origin of residual stresses, the concept of toughness, and the damage mechanisms associated with creep and stress rupture, stress corrosion, and hydrogen embrittlement.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490265
EISBN: 978-1-62708-340-9
... Abstract This chapter covers the failure modes and mechanisms of concern in steam turbines and the methods used to assess remaining component life. It provides a detailed overview of the design considerations, material requirements, damage mechanisms, and remaining-life-assessment methods...
Abstract
This chapter covers the failure modes and mechanisms of concern in steam turbines and the methods used to assess remaining component life. It provides a detailed overview of the design considerations, material requirements, damage mechanisms, and remaining-life-assessment methods for the most-failure prone components beginning with rotors and continuing on to casings, blades, nozzles, and high-temperature bolts. The chapter makes extensive use of images, diagrams, data plots, and tables and includes step-by-step instructions where relevant.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080379
EISBN: 978-1-62708-304-1
... Abstract This chapter discusses two damage mechanisms in which stress plays a major role. In the one case, stress causes cracks in the oxide scale on metals, leading to preferential corrosion attack. An example from industry of this type of failure is the circumferential cracking that occurs...
Abstract
This chapter discusses two damage mechanisms in which stress plays a major role. In the one case, stress causes cracks in the oxide scale on metals, leading to preferential corrosion attack. An example from industry of this type of failure is the circumferential cracking that occurs on the waterwall tubes of supercritical coal-fired boilers fired under low NOx combustion conditions, conducive to the production of sulfidizing environments. In the other case, stress contributes to brittle fracture in the form of intergranular cracking. The phenomenon, which is known by various names, typically occurs at the lower end of the intermediate temperature range and has been observed in ferritic steels, stainless steels, Fe-Ni-Cr alloys, and nickel-base alloys, as described in the chapter.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490415
EISBN: 978-1-62708-340-9
... Abstract Combustion turbines consist of a compressor, a combustor, and a turbine. As commonly configured, the compressor and turbine mount on a single shaft that connects directly to a generator. This chapter reviews the materials of construction, damage mechanisms, and life-assessment...
Abstract
Combustion turbines consist of a compressor, a combustor, and a turbine. As commonly configured, the compressor and turbine mount on a single shaft that connects directly to a generator. This chapter reviews the materials of construction, damage mechanisms, and life-assessment techniques for nozzles and buckets. It also presents key information from a detailed review of the literature and the results of a survey on combustion-turbine material problems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430409
EISBN: 978-1-62708-253-2
... Abstract The power generating industry has become proficient at predicting how long a component will last under a given set of operating conditions. This chapter explains how such predictions are made in the case of boiler tubes. It identifies critical damage mechanisms, progressive failure...
Abstract
The power generating industry has become proficient at predicting how long a component will last under a given set of operating conditions. This chapter explains how such predictions are made in the case of boiler tubes. It identifies critical damage mechanisms, progressive failure pathways, and relevant test and measurement procedures. It describes life assessment methods based on hardness, wall thickness, scale formation, microstructure, and creep. It also includes a case study on the determination of the residual life of a secondary superheater tube.
Image
in Cold Spray Applications in Repair and Refurbishment for the Aerospace, Oil and Gas, and Power-Generation Industries
> High Pressure Cold Spray: Principles and Applications
Published: 01 June 2016
Fig. 11.6 (Part 1) Examples of aluminum cold-sprayed coatings to repair mechanically damaged parts on an Army helicopter mast support. (a) Snap ring groove and (b) splines filled with cold-sprayed aluminum to restore original dimensions. Source: Ref 11.5 , 11.6 . (c) Naval helicopter
More
Image
in Cold Spray Applications in Repair and Refurbishment for the Aerospace, Oil and Gas, and Power-Generation Industries
> High Pressure Cold Spray: Principles and Applications
Published: 01 June 2016
Fig. 11.6 (Part 2) Examples of aluminum cold-sprayed coatings to repair mechanically damaged parts on an Army helicopter mast support. (a) Snap ring groove and (b) splines filled with cold-sprayed aluminum to restore original dimensions. Source: Ref 11.5 , 11.6 . (c) Naval helicopter
More
Image
in Types of Wear and Erosion and Their Mechanisms
> Tribomaterials: Properties and Selection for Friction, Wear, and Erosion Applications
Published: 30 April 2021
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430204
EISBN: 978-1-62708-253-2
... or caustic gouging. The damage mechanism of boiler tubes by caustic corrosion or caustic gouging is discussed separately in this book. Under-Deposit Corrosion Under-deposit corrosion is a consequence of deposition that occurs on the preboiler and boiler sides of the heat recovery system generator...
Abstract
This chapter discusses the effects of corrosion on boiler tube surfaces exposed to water and steam. It describes the process of corrosion, the formation of scale, and the oxides of iron from which it forms. It addresses the primary types of corrosion found in boiler environments, including general corrosion, under-deposit corrosion, microbially induced corrosion, flow-accelerated corrosion, stress-assisted corrosion, erosion-corrosion, cavitation, oxygen pitting, stress-corrosion cracking, and caustic embrittlement. The discussion is supported by several illustrations and relevant case studies.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490183
EISBN: 978-1-62708-340-9
... Abstract This chapter covers the failure modes and mechanisms associated with boiler components and the tools and techniques used to assess damages and predict remaining component life. It begins with a review of the design and operation of a utility boiler and the materials used...
Abstract
This chapter covers the failure modes and mechanisms associated with boiler components and the tools and techniques used to assess damages and predict remaining component life. It begins with a review of the design and operation of a utility boiler and the materials used in construction. It then describes the various causes of failure in boiler tubes, headers, and steam pipes, explaining how and why they occur, how they are diagnosed, and how to mitigate their effects. The final and by far largest section in the chapter is a tutorial on damage and life assessment techniques for boiler components and assemblies. It demonstrates the use of various methods, including analytical techniques that estimate life expenditure based on operating history, component geometry, and material properties; predictive methods based on the extrapolation of failure statistics; methods that predict life based on dimensional measurements; methods based on metallographic studies; methods based on temperature estimates; and a method for estimating remaining life under creep conditions based on stress-rupture testing of service-exposed material samples. The chapter also discusses the use of fracture mechanics and presents a number of cases in which life assessments are made based on the integration of several methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490001
EISBN: 978-1-62708-340-9
... and long term effects of mechanical, chemical, and thermal stressors. This chapter presents a broad overview of the types of damage to which materials are exposed at high temperatures and the approaches used to estimate remaining service life. It explains how operating conditions in power plants and oil...
Abstract
The ability to accurately assess the remaining life of components is essential to the operation of plants and equipment, particularly those in service beyond their design life. This, in turn, requires a knowledge of material failure modes and a proficiency for predicting the near and long term effects of mechanical, chemical, and thermal stressors. This chapter presents a broad overview of the types of damage to which materials are exposed at high temperatures and the approaches used to estimate remaining service life. It explains how operating conditions in power plants and oil refineries can cause material-related problems such as embrittlement, creep, thermal fatigue, hot corrosion, and oxidation. It also discusses the factors and considerations involved in determining design life, defining failure criteria, and implementing remaining-life-assessment procedures.
1