Skip Nav Destination
Close Modal
Search Results for
cylindrical forgings
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 187 Search Results for
cylindrical forgings
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1998
Fig. 12-20 Dimensional changes during hardening of D3 tool steel as a function of forging reduction. Data were obtained from 20 mm (0.8 in.) cylindrical specimens from square and round bars subjected to various amounts of forging reduction. Source: Ref 27
More
Image
Published: 01 August 1999
Fig. 11 Specimen orientation and fracture plane identification. L, length, longitudinal, principal direction of metal working (rolling, extrusion, axis of forging); T, width, long-transverse grain direction; S, thickness, short-transverse grain direction; C, chord of cylindrical cross section
More
Image
in Evaluation of Stress-Corrosion Cracking[1]
> Stress-Corrosion Cracking: Materials Performance and Evaluation
Published: 01 January 2017
Fig. 17.29 Specimen orientation and fracture plane identification. L, length, longitudinal, principal direction of metal working (rolling, extrusion, axis of forging); T, width, long-transverse grain direction; S, thickness, short-transverse grain direction; C, chord of cylindrical cross
More
Image
Published: 01 August 2018
Fig. 11.39 Longitudinal cross section of a rolled ring of AISI 8630 Mod steel produced by hot forging. (forging reduction 2:1), followed by ring rolling (total approximate deformation during hot working 4:1). Dendritic structure. The regions close to the cylindrical surfaces (left and right
More
Image
Published: 01 November 2013
Fig. 18 (a) Dies used in roll forging. (b) Overhang-type roll forger that uses fully cylindrical dies. Source: Ref 10
More
Image
in Secondary Working of Bar and Billet[1]
> Titanium: Physical Metallurgy, Processing, and Applications
Published: 01 January 2015
Fig. 10.12 Ring roller setup to produce symmetrical cylindrical or conical shapes. A preformed heavy-walled ring is heated for conventional forging and deformed between a driver and idler roll.
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540395
EISBN: 978-1-62708-309-6
... of forging); T, width, long-transverse grain direction; S, thickness, short-transverse grain direction. First letter: normal to the fracture plane (loading direction); second letter: direction of crack propagation in fracture plane Fig. A6.3 ASTM crack plane orientation identification code...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040007
EISBN: 978-1-62708-300-3
... alloys. Process Variations Closed-die forging without flash, P/M forging. Application Hollow parts having a closed end, cupped parts with holes that are cylindrical, conical, or of other shapes. 2.3.6 Radial Forging <xref ref-type="fig" rid="t51040007-f6">(Fig. 2.6)</xref> Fig. 2.6...
Abstract
This chapter explains that the key to forging is understanding and controlling metal flow and influential factors such as tool geometry, the mechanics of interface friction, material characteristics, and thermal conditions in the deformation zone. It also reviews common forging processes, including closed-die forging, extrusion, electrical upsetting, radial forging, hobbing, isothermal forging, open-die forging, orbital forging, and coining.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230295
EISBN: 978-1-62708-298-3
...) basal plane. Hot working preferentially orients the basal planes parallel to the plane of metal movement. Hence, for open-die upset forging of an isotropic billet, the basal plane orientation will be parallel to the radial-circumferential plane of the disk-shaped forging. For solid cylindrical...
Abstract
The vast majority of beryllium products are manufactured from blocks, forms, or billets of compacted powder that are machined or worked into shape. This chapter describes the metalworking processes used, including rolling, forming, forging, extrusion, drawing, and spinning. It covers the qualitative and quantitative aspects of each process and provides examples showing how they are implemented and the results that can be achieved. The chapter also discusses the issue of beryllium’s low formability and describes some of the advancements that have been made in near-net shape processing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.tb.atia.t59340165
EISBN: 978-1-62708-427-7
... extensive machining. The scrap generated during forging and subsequent machining is important but remains a secondary consideration to the microstructure control inherent in the process. Spin forging is used to produce cylindrical, axisymmetric products, such as wheels, from a preform. The spinning...
Abstract
Forged aluminum products vary widely in their production methods and applications. The forging process allows for control of microstructure and directional properties, and their fatigue and fracture resistance are superior to shape castings. This chapter presents the types, equipment, process steps, alloys, and products of aluminum forging.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740103
EISBN: 978-1-62708-308-9
... Abstract This chapter discusses bulk deformation processes and how they are used to reshape metals and refine solidification structures. It begins by describing the differences between hot and cold working along with their respective advantages. It then discusses various forging methods...
Abstract
This chapter discusses bulk deformation processes and how they are used to reshape metals and refine solidification structures. It begins by describing the differences between hot and cold working along with their respective advantages. It then discusses various forging methods, including open-die and closed-die forging, hot upset and roll forging, high-energy-rate forging, ring rolling, rotary swaging, radial and orbital forging, isothermal and hot-die forging, precision forging, and cold forging. The chapter also includes information on cold and hot extrusion and drawing operations.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040067
EISBN: 978-1-62708-300-3
... of the workpiece and the total upsetting force is greater than for the frictionless conditions. Fig. 7.1 Upsetting of cylindrical workpiece. (a) Frictionless. (b) With friction Cold and Hot Forging: Fundamentals and Applications Taylan Altan, Gracious Ngaile, Gangshu Shen, editors, p 67-81 DOI: 10.31399...
Abstract
This chapter discusses the effect of friction and lubrication on forgings and forging operations. The discussion covers lubrication mechanisms, the use of friction laws, tooling and process parameters, and the lubrication requirements of specific materials and forging processes. The chapter also describes several test methods for evaluating lubricants and explains how to interpret associated test data.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060117
EISBN: 978-1-62708-261-7
..., and brazing. It also discusses powder consolidation, rolling, drawing and extrusion, and common forging methods. fabrication finishing forging forming joining material removal powder processing METAL PRODUCTS that are subjected to mechanical reduction operations subsequent to casting...
Abstract
This chapter describes the processes involved in the fabrication of wrought and cast metal products. It discusses deformation processes including bending and forming, material removal processes such as milling, cutting, and grinding, and joining methods including welding, soldering, and brazing. It also discusses powder consolidation, rolling, drawing and extrusion, and common forging methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390325
EISBN: 978-1-62708-459-8
... test ( Fig. 11.16a ), where a cylindrical workpiece is forged into a die with a boss or spike; the greater the spike height, H s , the lower the friction and more effective the lubricant [ 39 , 73 – 77 ]. In addition, the force required to eject the part from the spike test die is indicative...
Abstract
Forging is a deformation process achieved through the application of compressive stresses. During the stroke, pressures and velocities are continuously changing and the initial lubricant supply must suffice for the duration of the operation. Lubricant residues and pickup products also change with time, further complicating the analysis of friction and wear. This chapter provides a qualitative and quantitative overview of the mechanics and tribology of forging in all of its forms. It discusses the effects of friction, pressures, forces, and temperature on the deformation and flow of metals in open-die, closed-die, and impression-die forging and in back extrusion and piercing operations. It presents various ways to achieve fluid-film lubrication in upset forging processes and examines the cause of barreling, defect formation, and folding in the upsetting of cylinders, rings, and slabs. It also explains how to evaluate lubricants, friction, and wear under hot, cold, and warm forging conditions and how to extend die life and reduce defects when processing different materials.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130133
EISBN: 978-1-62708-284-6
... components with off-center port bosses begin as a billet of material of a given diameter and are then forged between flat dies to a larger diameter and a reduced axial dimension. Subsequent forging operations on the forged initial preform create cylindrical walls along with various configurations, depending...
Abstract
This article presents six case studies of failures with steel forgings. The case studies covered are crankshaft underfill; tube bending; spade bit; trim tear; upset forging; and avoidance of flow through, lap, and crack. The case studies illustrate difficulties encountered in either cold forging or hot forging in terms of preforge factors and/or discontinuities generated by the forging process. Supporting topics that are discussed in the case studies include validity checks for buster and blocker design, lubrication and wear, mechanical surface phenomenon, forging process design, and forging tolerances. Wear, plastic deformation processes, and laws of friction are introduced as a group of subjects that have been considered in the case studies.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220353
EISBN: 978-1-62708-259-4
.... It describes special cases of segregation, including banding and why it occurs, and the application of closed die forging. The chapter also presents several examples of hot working defects, including forging laps, cracks, and overheated or burned steel. closed die forging hot working inclusions open...
Abstract
This chapter discusses the effects of hot working on the structure and properties of steel. It explains how working steels at high temperatures promotes diffusion, which helps close cavities and pores, and how it changes the shape and distribution of segregates, offsetting their effect. It describes the effect of hot working on nonmetallic inclusions and the many properties influenced by them. It discusses the recrystallization mechanism by which hot working produces microstructural changes and explains how to control it by adjusting temperature, degree of reduction, and cooling rates. It describes special cases of segregation, including banding and why it occurs, and the application of closed die forging. The chapter also presents several examples of hot working defects, including forging laps, cracks, and overheated or burned steel.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040091
EISBN: 978-1-62708-300-3
... of finite element analysis. [ Bathe, 1996 ] 9.4.3 Analysis of Axisymmetric Upsetting by the FE Method The use of the FE method in analysis of forging processes is discussed with the help of a simple cylindrical compression simulation. Figure 9.6(a) shows the cutaway of a cylinder, which...
Abstract
There are numerous approximate methods, both analytical and numerical, for analyzing forging processes. None are perfect because of the assumptions made to simplify the mathematical approach, but all have merit. This chapter discusses the slab, upperbound, and finite element methods, covering basic principles, implementation, and advantages and disadvantages in various applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720365
EISBN: 978-1-62708-305-8
... Abstract In forgings of both ferrous and nonferrous metals, the flaws that most often occur are caused by conditions that exist in the ingot, by subsequent hot working of the ingot or the billet, and by hot or cold working during forging. The inspection methods most commonly used to detect...
Abstract
In forgings of both ferrous and nonferrous metals, the flaws that most often occur are caused by conditions that exist in the ingot, by subsequent hot working of the ingot or the billet, and by hot or cold working during forging. The inspection methods most commonly used to detect these flaws include visual, magnetic particle, liquid penetrant, ultrasonic, eddy current, and radiographic inspection. This chapter provides a detailed discussion on the characteristics, process steps, applications, advantages, and limitations of these methods. It also describes the flaws caused by the forging operation and the principal factors that influence the selection of a nondestructive inspection method for forgings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480225
EISBN: 978-1-62708-318-8
... Abstract This chapter discusses the equipment and processes used to convert titanium billet and bar into useful shapes or more refined product forms. These secondary working operations include open-die, closed-die, hot-die and isothermal forging as well as ring rolling and extruding...
Abstract
This chapter discusses the equipment and processes used to convert titanium billet and bar into useful shapes or more refined product forms. These secondary working operations include open-die, closed-die, hot-die and isothermal forging as well as ring rolling and extruding. The chapter describes each method in detail and how it affects the microstructure and mechanical properties of various titanium alloys. It also discusses the propensity of titanium to react with oxygen and hydrogen when heated and explains how to mitigate the effects.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040237
EISBN: 978-1-62708-300-3
... Abstract This chapter discusses the use of finite-element methods for modeling cold forging processes. The discussion covers process modeling inputs, such as geometric parameters, material properties, and interface conditions, and includes several application examples. cold forging...
1