Skip Nav Destination
Close Modal
Search Results for
cyclic hardening
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 273 Search Results for
cyclic hardening
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 November 2012
Image
Published: 01 November 2012
Fig. 38 Stress-strain response under (a) cyclic softening or (b) cyclic hardening conditions. Source: Ref 19
More
Image
Published: 01 June 2008
Image
Published: 01 March 2006
Fig. 2.6 Cyclic hardening and softening of oxygen-free high-conductivity (OFHC) copper under strain control depends on its initial hardness ( Ref 2.3 ). (a) Fully annealed showing cyclic hardening. (b) Partially annealed showing a small degree of hardening. (c) Extremely cold worked showing
More
Image
Published: 01 March 2006
Fig. 2A1.3 A new and more definitive criterion for predicting cyclic hardening or softening behavior based on S u /r y and n
More
Image
Published: 01 March 2006
Fig. 2A2.1 Cyclic strain hardening/softening behavior of two steels. (a) AM 350 alloy. (b) 52100 bearing steel ( Ref 2.4 )
More
Image
Published: 01 March 2006
Fig. 3.25 Use of the cyclic stress-strain curve to obtain the strain-hardening exponent and transition strain range. Source: Ref 3.26
More
Image
in Special Materials: Polymers, Bone, Ceramics, and Composites
> Fatigue and Durability of Structural Materials
Published: 01 March 2006
Fig. 12.15 Determination of cyclic strain-hardening exponents for three test materials for which the slope of the elastic line is calculated. (a) Polypropylene data ( Ref 12.4 ). (b) Nylon 6/6 ( Ref 12.3 ). (c) Polycarbonate ( Ref 12.3 )
More
Image
Published: 01 March 2006
Fig. 2.5 Response of annealed and hardened steels under cyclic straining. (a) Annealed 304 stainless steel (cyclically hardening). (b) Hardened 4340 steel (cyclically softening). Source: Ref 2.2
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610147
EISBN: 978-1-62708-303-4
... fatigue data. It compares the Gerber, Goodman, and Soderberg methods for predicting the effect of mean stress from bending data, describes the statistical nature of fatigue measurements, and explains how plastic strain causes cyclic hardening and softening. It discusses the work of Wohler, Basquin...
Abstract
This chapter discusses the factors that play a role in fatigue failures and how they affect the service life of metals and structures. It describes the stresses associated with high-cycle and low-cycle fatigue and how they differ from the loading profiles typically used to generate fatigue data. It compares the Gerber, Goodman, and Soderberg methods for predicting the effect of mean stress from bending data, describes the statistical nature of fatigue measurements, and explains how plastic strain causes cyclic hardening and softening. It discusses the work of Wohler, Basquin, and others and how it led to the development of a strain-based approach to fatigue and the use of fatigue strength and ductility coefficients. It reviews the three stages of fatigue, beginning with crack initiation followed by crack growth and final fracture. It explains how fracture mechanics can be applied to crack propagation and how stress concentrations affect fatigue life. It also discusses fatigue life improvement methods and design approaches.
Image
Published: 01 March 2006
Fig. 4.3 Schematic patterns of strain ratcheting under force control for (a) cycling hardening and (b) cyclic softening, and patterns of cyclic stress relaxation under strain control for (c) cyclic hardening and (d) cyclic softening
More
Image
Published: 01 August 2005
Fig. 3.4 Examples of the early stress-strain behavior of OFHC copper subjected to controlled cyclic strain. (a) Fully annealed showing cyclic hardening. (b) Partially annealed. (c) Severely cold worked showing cyclic softening. Source: Ref 3.5
More
Image
Published: 01 March 2006
Fig. 2.4 Typical pattern of response of materials during strain cycling (schematic). (a) Cyclically hardening material. (b) Cyclically softening material
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870009
EISBN: 978-1-62708-344-7
... Abstract This chapter provides a detailed analysis of the cyclic stress-strain behavior of materials under uniaxial stress and strain cycling. It first considers the case of a stable material under constant-amplitude strain cycling then broadens the discussion to materials that harden or soften...
Abstract
This chapter provides a detailed analysis of the cyclic stress-strain behavior of materials under uniaxial stress and strain cycling. It first considers the case of a stable material under constant-amplitude strain cycling then broadens the discussion to materials that harden or soften with continued strain reversals. It compares and contrasts the response patterns of such materials, explaining how the movement of dispersed particles and dislocations influences their behavior. It then examines the behavior of materials under uniaxial strain reversals of varying amplitude and explains how to construct double-amplitude stress-strain curves that account for complex straining histories. For special cases, those involving complex materials such as gray cast iron or highly complex straining patterns, the chapter presents other methods of analysis, including the rainflow cycle counting method, mechanical modeling based on displacement-limited elements, Wetzel’s method, and deformation modeling. It also explains the difference between force cycling and stress cycling and presents alternate techniques for predicting whether a material will become harder or softer in response to strain cycling.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540121
EISBN: 978-1-62708-309-6
... are presented below. Cyclic Strain Hardening and Softening Consider the stress-strain history shown in Fig. 3.2 . First, tension stress was applied and the test went beyond point A 0 (the elastic limit) to point B 0 , an arbitrary preselected strain level of + 0.048. It was then unloaded from point...
Abstract
This chapter examines the stress-strain characteristics of metals and alloys subjected to cyclic loading and the cumulative effects of fatigue. It begins by explaining how a single load reversal can lower the yield stress of a material and how repeated reversals can cause strain hardening and softening, both of which lead to premature failure. It then discusses the stages of fatigue fracture, using detailed images to show how cracks initiate and grow and how they leave telltale marks on fracture surfaces. It goes on to describe fatigue life assessment methods and demonstrate their use on different metals and alloys. The chapter also discusses design-based approaches for preventing fatigue failures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140193
EISBN: 978-1-62708-335-5
... information as available. Compressive tangent modulus curves are presented for certain alloys. The effects of cyclic loading are given on several curves. aluminum alloys compressive tangent modulus curves cyclic hardening stress-strain curves This collection of stress-strain curves...
Abstract
The stress-strain curves in this data set are representative examples of the behavior of several cast alloys under tensile or compressive loads. The curves are arranged by alloy designation. Each figure cites the original source of the curve and provides pertinent background information as available. Compressive tangent modulus curves are presented for certain alloys. The effects of cyclic loading are given on several curves.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240243
EISBN: 978-1-62708-251-8
... hardening, cyclic strain softening, or remain stable. Cyclic strain hardening and softening are illustrated schematically in Fig. 14.11 . In both cases, the hysteresis loops change with successive cycles. Cyclic hardening leads to increasing peak strain with increasing cycles, while cyclic softening...
Abstract
Fatigue failures occur due to the application of fluctuating stresses that are much lower than the stress required to cause failure during a single application of stress. This chapter describes three basic factors that cause fatigue: a maximum tensile stress of sufficiently high value, a large enough variation or fluctuation in the applied stress, and a sufficiently large number of cycles of the applied stress. The discussion covers high-cycle fatigue, low-cycle fatigue, and fatigue crack propagation. The chapter then discusses the stages where fatigue crack nucleation and growth occurs. It describes the most effective methods of improving fatigue life. The chapter also explains the effect of geometrical stress concentrations on fatigue. In addition, it explores the environmental effects of corrosion fatigue, low-temperature fatigue, high-temperature fatigue, and thermal fatigue. Finally, the chapter discusses a number of design philosophies or methodologies to deal with design against fatigue failures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870075
EISBN: 978-1-62708-344-7
... hardening or softening, and the magnitude of the mean stress involved. Schematic representations of the response of cyclically hardening and softening materials under zero-to-max force control and zero-to-max strain-controlled cycling are illustrated in Fig. 4.3 . The upper half of the figure shows...
Abstract
This chapter discusses the concept of mean stress and explains how it is used in fatigue analysis and design. It begins by examining the stress-strain response of test samples subjected to cyclic forces and strains, noting important features and what they reveal about materials and their fatigue behaviors. It then discusses the challenge of developing hysteresis loops for complex loading patterns and accounting for effects such as ratcheting and stress relaxation. The sections that follow provide a summary of the various ways mean stress is described in the literature and the methods used to calculate or predict its effect on the fatigue life of machine components. The discussion also sheds light on why tensile mean stress is detrimental to both fatigue life and ductility, while compressive mean stress is highly beneficial.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870325
EISBN: 978-1-62708-344-7
..., in method III, the value of slope of the plastic line is accepted as determined by method II, but the value of the slope of the elastic line b is determined from the hysteresis loop of the experimental point. By plotting plastic strain against stress, the cyclic hardening exponent n ′ can be determined...
Abstract
This chapter discusses the effect of fatigue on polymers, ceramics, composites, and bone. It begins with a general comparison of polymers and metals, noting important differences in microstructure and cyclic loading response. It then presents the results of several studies that shed light on the fatigue behavior and crack growth mechanisms of common structural polymers and moves on from there to discuss the fatigue behavior of bone and how it compares to stable and cyclically softening metals. It also discusses the fatigue characteristics of engineered and composited ceramics and ceramic fiber-reinforced metal-matrix composites.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.9781627083447
EISBN: 978-1-62708-344-7
1