Skip Nav Destination
Close Modal
Search Results for
crystallography
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 49 Search Results for
crystallography
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 June 1983
Figure 9.30 Crystallography of surface martensite. Two sides of the grain at right angles to each other are shown for an Fe–28 wt.% Ni alloy. Traces of martensite crystals and their respective f.c.c. directions and planar traces are indicated.
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410017
EISBN: 978-1-62708-265-5
... This chapter describes the iron-carbon phase diagram, its modification by alloying elements, and the effect of carbon on the chemistry and crystallography of austenite, ferrite, and cementite found in Fe-C alloys and steels. It also lays the groundwork for understanding important metallurgical...
Abstract
This chapter describes the iron-carbon phase diagram, its modification by alloying elements, and the effect of carbon on the chemistry and crystallography of austenite, ferrite, and cementite found in Fe-C alloys and steels. It also lays the groundwork for understanding important metallurgical concepts, including solubility, critical temperature, dislocation defects, slip, and diffusion, and how they affect the microstructure, properties, and behaviors of steel.
Image
in Conventional Heat Treatments—Usual Constituents and Their Formation
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Fig. 9.13 A schematic representation illustrating how it is possible for martensite (α′) to maintain macroscopic coherency with the surrounding austenite (γ). For this to happen, martensite must form with well-defined crystallography in relation to the parent austenite, as discussed
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410063
EISBN: 978-1-62708-265-5
... 5.32 Crystallography of Martensitic Transformation The diffusionless, shear mechanism of martensitic transformation requires good crystallographic coupling between the parent and product phases. Two important crystallographic parameters or characteristics emphasize this interrelationship...
Abstract
The formation of martensite is characterized by its athermal transformation kinetics, crystallographic features, and development of fine structure. This chapter describes the diffusionless, shear-type transformation of austenite to martensite and how it affects the morphology and microstructure of heat-treatable carbon steels. It also provides information on lath and plate martensite and how they differ in structure and deformation properties.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030167
EISBN: 978-1-62708-282-2
.... This is the case for most aluminum alloys. Alloying elements that are typically used to increase the corrosion resistance have low solubility in aluminum when alloyed using conventional techniques. Metallurgical Factors In addition to alloying, there are metallurgical factors, such as crystallography, grain...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240625
EISBN: 978-1-62708-251-8
... for the fcc structure, CN = 12, is the same as that for the hcp structure. A basic rule of crystallography is that if the coordination numbers of two different unit cells are the same, then they will both have the same packing factors. It should also be noted that both the fcc and hcp structures are what...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860295
EISBN: 978-1-62708-348-5
... is referred to Reed and Breedis (1966) for a thorough compilation (702 references) of literature prior to 1966; to Bilby and Christian (1961) , Christian (1970) , Wayman ( 1964 , 1968 ), and Lieberman (1970) for excellent descriptions of martensite crystallography; and to Roitburd and Kurdjumov (1979...
Abstract
This chapter concentrates on very low-temperature martensitic transformations, which are of great concern for cryogenic applications and research. The principal transformation characteristics are reviewed and then elaborated. The material classes or alloy systems that exhibit martensitic transformations at very low temperatures are discussed. In particular, the martensitic transformations and their effects in austenitic stainless steels, iron-nickel alloys, practical superconductors, alkali metals, solidified gases, and polymers are discussed.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030115
EISBN: 978-1-62708-349-2
... to the rate of changes in refractive index and the thickness of the specimen, or both. Optical path differences are sometimes referred to as optical thickness or optical color staining ( Ref 5 ). These microscopy methods are based on the fundamentals of optics and optical crystallography and polymer...
Abstract
Transmitted-light methods reveal more details of the morphology of fiber-reinforced polymeric composites than are observable using any other available microscopy techniques. This chapter describes the various aspects relating to the selection and preparation of ultrathin-section specimens of fiber-reinforced polymeric composites for examination by transmitted-light microscopy techniques. The preparation steps covered are a selection of the rough section, preparation of the rough section for preliminary mounting, grinding and polishing the primary-mount first surface, mounting the first surface on a glass slide, and preparing the second surface (top surface). The optimization of microscope conditions and analysis of specimens by microscopy techniques are also covered. In addition, examples of composite ultrathin sections that are analyzed using transmitted-light microscopy contrast methods are shown throughout.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900045
EISBN: 978-1-62708-358-4
Abstract
This chapter describes the various phases that form in tool steels, starting from the base of the Fe-C system to the effects of the major alloying elements. The emphasis is on the phases themselves: their chemical compositions, crystal structures, and properties. The chapter also provides general considerations of phases and phase diagrams and the determination of equilibrium phase diagrams. It describes the formation of martensite, characteristics of alloy carbides, and the design of tool steels.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.tm.t52320001
EISBN: 978-1-62708-357-7
.... However, his contribution is just an episode in the history of understanding microstructure because it occurred before basic concepts of crystallography were established, such as Miller index (1839) and Bravais lattice (1848) ( Ref 6 ). On the other hand, Sorby, born and raised in the town of iron...
Abstract
This chapter explains the distinction between materials and matter through the concept of microstructure. It presents the history of matter science and the establishment of metallography. The chapter provides an overview of the progress of steel technology, progress in synthetic polymers and ceramics, and establishment and development of materials science.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410001
EISBN: 978-1-62708-265-5
..., and distribution of microstructural features but also the crystallography and the chemistry of the features. The availability of these instruments and how and what they reveal makes possible more and more complete characterization of steel structures. Examples of the structures shown by the various techniques...
Abstract
This chapter provides perspective on the physical dimensions associated with the microstructure of steel and the instruments that reveal grain size, morphology, phase distributions, crystal defects, and chemical composition, from which properties and behaviors derive. The chapter also reviews the definitions and classifications used to identify and differentiate commercial steels, including the AISI/SAE and UNS designation systems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410621
EISBN: 978-1-62708-265-5
... martensite in H-13 steel tempered at 550 °C (1022 °F). Fig. 24.17 Alloy carbides in a lath of martensite in H-13 tool steel tempered 100 h at 550 °C (1022 °F). Transmission electron micrograph. Courtesy of J.R.T. Branco, Colorado School of Mines The crystallography and composition of the alloy...
Abstract
Tools steels are defined by their wear resistance, hardness, and durability which, in large part, is achieve by the presence of carbide-forming alloys such as chromium, molybdenum, tungsten, and vanadium. This chapter describes the alloying principles employed in various tool steels, including high-speed, water-hardening, shock-resistant, and hot and cold work tool steels. It discusses the influence of alloy design on the evolution of microstructure and properties during solidification, heat treating, and hardening operations. It also describes critical phase transformations and the effects of partitioning, precipitation, segregation, and retained austenite.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900001
EISBN: 978-1-62708-358-4
... considerable experimentation, chance, intuition, and perceptive observation. Indeed, the production of hardened tool steels must be considered truly impressive. It was accomplished without analytical instruments or scientific understanding of chemistry, crystallography, or microstructure. Iron can...
Abstract
Tool steels are the ferrous alloys used to manufacture tools, dies, and molds that shape, form, and cut other materials, including steels, nonferrous metals, and plastics. This chapter explores the considerations that make tool steels a very special class of steels, the long historical evolution of iron and steel manufacture, including steels for tools, and the development of tool steels as they emerged from the general class of iron and steel products.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.tm.9781627083577
EISBN: 978-1-62708-357-7
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.9781627082518
EISBN: 978-1-62708-251-8
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220193
EISBN: 978-1-62708-259-4
...′) to maintain macroscopic coherency with the surrounding austenite (γ). For this to happen, martensite must form with well-defined crystallography in relation to the parent austenite, as discussed, for instance in Ref 7 . Micrographic evaluation indicates that the orientation of the martensite “needles...
Abstract
Heat treatment is the most common way of altering the mechanical, physical, and even chemical properties of steels. This chapter describes the changes that occur in carbon and low-alloy steels during conventional heat treatments. It explains how austenite decomposition largely defines the final microstructure, and how the associated phase transformations are driven by nucleation and growth processes. It describes diffusionless and diffusive growth mechanisms and provides detailed information on the properties, structure, and behaviors of the transformation products produced, namely martensite and bainite. It also discusses the formation of austenite, the control and measurement of austenitic grain size, the characteristics of ferritic microstructures, and the methods used to classify ferrite morphology.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870375
EISBN: 978-1-62708-344-7
... as the atomic defects present, greatly influence the elastic stiffness and the forces required to cause plasticity and fracture. In this brief review we consider some rudiments that elementary students can apply to understand the many concepts and terms used in this book. Crystallography Alloys...
Abstract
This appendix provides supplemental information on the metallurgical aspects of atomic structure, the use of dislocation theory, heat treatment processes and procedures, important engineering materials and strengthening mechanisms, and the nature of elastic, plastic, and creep strain components. It also provides information on mechanical property and fatigue testing, the use of hysteresis energy to analyze fatigue, a procedure for inverting equations to solve for dependent variables, and a method for dealing with the statistical nature of failure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240003
EISBN: 978-1-62708-251-8
... factor is 0.74. Note that this is the same packing factor as was obtained for the fcc structure. Also, the coordination number obtained for the hcp structure (CN = 12) is the same as that for the fcc structure. A basic rule of crystallography is that if the coordination numbers of two different unit...
Abstract
Bonding in solids may be classified as either primary or secondary bonding. Methods of primary bonding include the metallic, ionic, and covalent bonds. This chapter discusses and provides a comparison of the properties of these bonds. This is followed by a discussion on crystalline structure, providing information on space lattices and crystal systems, hexagonal close-packed systems, and face-centered and body-centered cubic systems. The chapter then covers slip systems and closes with a brief section on allotropic transformations that occur at a constant temperature during either heating or cooling.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930003
EISBN: 978-1-62708-359-1
... grain structure and the welding conditions. Initial growth occurs epitaxially at the partially melted grains. Both growth crystallography and thermal conditions can strongly influence the development of grain structure in the weld metal by favoring a strong grain-growth selection process. Growth...
Abstract
It is well established that solidification behavior in the fusion zone controls the size and shape of grains, the extent of segregation, and the distribution of inclusions and defects such as porosity and hot cracks. Since the properties and integrity of the weld metal depend on the solidification behavior and the resulting microstructural characteristics, understanding weld pool solidification behavior is essential. This article provides a general introduction of key welding variables including solidification of the weld metal or fusion zone and microstructure of the weld and heat-affected zone. It discusses the effects of welding on microstructure and the causes and remedies of common welding flaws.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220085
EISBN: 978-1-62708-259-4
... and 8 . Even the simplest images obtained by TEM require knowledge of phase crystallography and of the TEM technique to be properly interpreted. Important aspects of TEM technique are: It is possible to obtain diffraction patterns from extremely small particles in the sample...
Abstract
This chapter discusses the use of electron microscopy in metallographic analysis. It explains how electrons interact with metals and how these interactions can be harnessed to produce two- and three-dimensional images of metal surfaces and generate crystallographic and compositional data as well. It discusses the basic design and operating principles of scanning electron microscopes, transmission electron microscopes, and scanning transmission electron microscopes and how they are typically used. It describes the additional information contained in backscattered electrons and emitted x-rays and the methods used to access it, namely wavelength and energy dispersive spectroscopy and electron backscattering diffraction techniques. It also describes the role of focused ion beam milling in sample preparation and provides information on atom probes, atomic force microscopes, and laser scanning microscopes.
1