Skip Nav Destination
Close Modal
Search Results for
crystalline imperfections
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 94 Search Results for
crystalline imperfections
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240017
EISBN: 978-1-62708-251-8
... Abstract In a perfect crystalline structure, there is an orderly repetition of the lattice in every direction in space. Real crystals contain a considerable number of imperfections, or defects, that affect their physical, chemical, mechanical, and electronic properties. Defects play...
Abstract
In a perfect crystalline structure, there is an orderly repetition of the lattice in every direction in space. Real crystals contain a considerable number of imperfections, or defects, that affect their physical, chemical, mechanical, and electronic properties. Defects play an important role in processes such as deformation, annealing, precipitation, diffusion, and sintering. All defects and imperfections can be conveniently classified under four main divisions: point defects, line defects, planar defects, and volume defects. This chapter provides a detailed discussion on the causes, nature, and impact of these defects in metals. It also describes the mechanisms that cause plastic deformation in metals.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2021
DOI: 10.31399/asm.tb.ciktmse.t56020013
EISBN: 978-1-62708-389-8
... edge dislocations glide plane grain boundaries miscibility pinning screw dislocations stacking sequence Crystalline Imperfections Key Topics in Copyright © 2021 ASM International® Materials Science and Engineering All rights reserved Yip-Wah Chung DOI: 10.31399/asm.tb.ciktmse.t56020013...
Abstract
This chapter provides readers with worked solutions to more than 25 problems related to compositional impurities and structural defects. The problems deal with important issues and challenges such as the design of low-density steels, the causes and effects of distortion in different crystal structures, the ability to predict the movement of dislocations, the influence of impurities on defects, the relationship between gain size and material properties, the identification of specific types of defects, the selection of compatible metals for vacuum environments, and the effect of twinning planes on stacking sequences. The chapter also includes problems on how the formation of precipitates can produce slip planes and how grain boundaries can act as obstacles to dislocation motion.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2021
DOI: 10.31399/asm.tb.ciktmse.9781627083898
EISBN: 978-1-62708-389-8
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420363
EISBN: 978-1-62708-310-2
..., crystalline imperfections, and the formation of surface or planar defects. It also discusses the use of X-ray diffraction for determining crystal structure. crystalline structures line defects metallic structure planar defects plastic deformation point defects volume defects X-ray diffraction...
Abstract
This appendix provides a detailed overview of the crystal structure of metals. It describes primary bonding mechanisms, space lattices and crystal systems, unit cell parameters, slip systems, and crystallographic planes and directions as well as plastic deformation mechanisms, crystalline imperfections, and the formation of surface or planar defects. It also discusses the use of X-ray diffraction for determining crystal structure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2021
DOI: 10.31399/asm.tb.ciktmse.t56020001
EISBN: 978-1-62708-389-8
... of carbon in fcc iron is 2.2 weight % compared with only 0.022 weight % in bcc iron. There are two broad types of crystalline imperfections: compositional and structural. Compositional imperfections refer to the presence of impurities in a given material in which impurity atoms replace host atoms...
Abstract
Alloying, heat treating, and work hardening are widely used to control material properties, and though they take different approaches, they all focus on imperfections of one type or other. This chapter provides readers with essential background on these material imperfections and their relevance in design and manufacturing. It begins with a review of compositional impurities, the physical arrangement of atoms in solid solution, and the factors that determine maximum solubility. It then describes different types of structural imperfections, including point, line, and planar defects, and how they respond to applied stresses and strains. The chapter makes extensive use of graphics to illustrate crystal lattice structures and related concepts such as vacancies and interstitial sites, ion migration, volume expansion, antisite defects, edge and screw dislocations, slip planes, twinning planes, and dislocation passage through precipitates. It also points out important structure-property correlations.
Image
Published: 30 November 2013
Fig. 1 Schematic sketch of microstructural changes in crystal structure due to repetitive shearing forces. Spheres represent atoms, and lines represent attractive and repulsive interatomic forces. An edge dislocation, represented by the inverted T-shaped symbol, is an imperfection
More
Image
in Crystal Structure Defects and Imperfections
> Crystalline Imperfections: Key Topics in Materials Science and Engineering
Published: 01 October 2021
Fig. 1 Types of intrinsic point defects: vacancy and interstitial
More
Image
in Crystal Structure Defects and Imperfections
> Crystalline Imperfections: Key Topics in Materials Science and Engineering
Published: 01 October 2021
Fig. 2 Schottky, Frenkel, and antisite defects in an ionic crystal
More
Image
in Crystal Structure Defects and Imperfections
> Crystalline Imperfections: Key Topics in Materials Science and Engineering
Published: 01 October 2021
Fig. 3 (a) Atom arrangements in an edge dislocation. (b) Illustration of Burgers vector derived from the RH/SF (right-hand/start-to-finish) convention.
More
Image
in Crystal Structure Defects and Imperfections
> Crystalline Imperfections: Key Topics in Materials Science and Engineering
Published: 01 October 2021
Fig. 4 Motion of an edge dislocation due to shear stress
More
Image
in Crystal Structure Defects and Imperfections
> Crystalline Imperfections: Key Topics in Materials Science and Engineering
Published: 01 October 2021
Fig. 5 Atomic arrangement in a screw dislocation. Excerpted from an animation video produced by Branicio Research Lab; reprinted with permission from Prof. Paulo Branicio.
More
Image
in Crystal Structure Defects and Imperfections
> Crystalline Imperfections: Key Topics in Materials Science and Engineering
Published: 01 October 2021
Fig. 6 Schematic of dislocation multiplication due to an external stress by a Frank-Read source, with dislocation segment pinned at two ends A and B . Source: Ref 1
More
Image
in Crystal Structure Defects and Imperfections
> Crystalline Imperfections: Key Topics in Materials Science and Engineering
Published: 01 October 2021
Fig. 7 (a) Schematic illustration of a grain boundary. (b) Hall-Petch data for Fe. Closed points are Vickers and nanoindentation hardness values divided by the Tabor factor of 3, while open points are yield strengths measured using compression or tension tests. The red dotted line is the best f...
More
Image
in Crystal Structure Defects and Imperfections
> Crystalline Imperfections: Key Topics in Materials Science and Engineering
Published: 01 October 2021
Fig. 8 A grain boundary modeled as an array of edge dislocations
More
Image
in Crystal Structure Defects and Imperfections
> Crystalline Imperfections: Key Topics in Materials Science and Engineering
Published: 01 October 2021
Fig. 9 (a) Schematic diagram showing atomic displacements during twinning. (b) Twins appearing as fine lines on the surface of tin after bending deformation. Courtesy of Prof. K. Stair. (c) Annealing twins in Inconel 718 after annealing at 1100 °C for 2 minutes. Source: Ref 3
More
Image
in Crystal Structure Defects and Imperfections
> Crystalline Imperfections: Key Topics in Materials Science and Engineering
Published: 01 October 2021
Fig. 10 Dislocation passage through precipitates
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240003
EISBN: 978-1-62708-251-8
... increases, and material ductility is beneficially affected. In addition, polycrystalline hcp metals can also deform by a mechanism called twinning, which is covered in Chapter 2, “Crystalline Imperfections and Plastic Deformation,” in this book. The methods for identifying crystalline planes...
Abstract
Bonding in solids may be classified as either primary or secondary bonding. Methods of primary bonding include the metallic, ionic, and covalent bonds. This chapter discusses and provides a comparison of the properties of these bonds. This is followed by a discussion on crystalline structure, providing information on space lattices and crystal systems, hexagonal close-packed systems, and face-centered and body-centered cubic systems. The chapter then covers slip systems and closes with a brief section on allotropic transformations that occur at a constant temperature during either heating or cooling.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870237
EISBN: 978-1-62708-344-7
... microscopic imperfections to coalesce into larger flaws. It also discusses the factors that contribute to the development and propagation of fatigue cracks, including surface deterioration, volumetric and environmental effects, foreign particles, and stresses generated by rolling contact. References...
Abstract
This chapter focuses on the processes and mechanisms involved in fatigue. It begins with a review of some of the early theories of fatigue and the tools subsequently used to obtain a better understanding of the fatigue process. It then explains how plasticity plays a major role in creating dislocations, breaking up grains into subgrains, and causing microscopic imperfections to coalesce into larger flaws. It also discusses the factors that contribute to the development and propagation of fatigue cracks, including surface deterioration, volumetric and environmental effects, foreign particles, and stresses generated by rolling contact.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240631
EISBN: 978-1-62708-251-8
... in the study of crystalline structures. crystalline planes crystalline directions crystalline structures X-ray techniques Miller indices cubic crystal systems hexagonal crystal systems C.1 Miller Indices for Cubic Systems Special planes and directions within metal crystal structures play...
Abstract
This appendix explains how to identify crystallographic planes and directions. It shows how Miller indices, a system for specifying crystallographic planes within a unit cell, are determined for cubic and hexagonal systems. It also explains how x-ray diffraction techniques are used in the study of crystalline structures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540357
EISBN: 978-1-62708-309-6
... Abstract Deformation within a crystal lattice is governed principally by the presence of dislocations, which are two-dimensional defects in the lattice structure. Slip from shear stress is the most common deformation mechanism within crystalline lattices of metallic materials, although...
Abstract
Deformation within a crystal lattice is governed principally by the presence of dislocations, which are two-dimensional defects in the lattice structure. Slip from shear stress is the most common deformation mechanism within crystalline lattices of metallic materials, although deformation of crystal lattices can also occur by other processes such as twinning and, in special circumstances, by the migration of vacant lattice sites. This appendix describes the notation used to specify lattice planes and directions and discusses the mechanisms of slip and twinning as well as the effect of stacking faults.
1