Skip Nav Destination
Close Modal
Search Results for
creep rupture testing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 260 Search Results for
creep rupture testing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 July 2009
Fig. 1.21 Early concept of cyclic creep-rupture testing (a) Hysteresis loop. (b) Imposed cyclic stress history and cyclic strain response. Source: Ref 1.62
More
Image
Published: 01 March 2002
Fig. 12.79 Average rupture elongation of creep-rupture-tested longitudinal CGDS and PC cast MAR-M-200
More
Image
Published: 01 December 1989
Fig. 3.32. Plot of data from accelerated creep-rupture tests on retired header specimens, illustrating the isostress method ( Ref 160 ).
More
Image
in Life Prediction for Boiler Components
> Damage Mechanisms and Life Assessment of High-Temperature Components
Published: 01 December 1989
Fig. 5.25. Above: Graph showing results of creep-rupture tests on 1Cr-½Mo steel after removal from boiler tubes (tests at 510 °C, or 950 °F). Below: Micrographs showing stages of spheroidization present in samples at beginning of test ( Ref 45 ). Stage A (top left): Ferrite and very fine
More
Image
Published: 01 November 2012
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140243
EISBN: 978-1-62708-335-5
... Abstract This data set contains the results of uniaxial creep rupture tests for a wide range of aluminum casting alloys conducted at temperatures from 100 to 315 deg C. In most cases, tests were made of several lots of material of each alloy and temper, the results were analyzed...
Abstract
This data set contains the results of uniaxial creep rupture tests for a wide range of aluminum casting alloys conducted at temperatures from 100 to 315 deg C. In most cases, tests were made of several lots of material of each alloy and temper, the results were analyzed, and the averages were normalized to the room-temperature typical values. For some alloys, "representative" values (raw data) rather than typical values are provided.
Image
Published: 01 November 2007
Fig. 5.48 Elongation to fracture as a function of rupture life of HK-40 and HK-30 comparing the as-cast specimens tested in air and the precarburized (thoroughly carburized) specimens tested in H 2 -1%CH 4 ( a c = 0.8) (to avoid decarburization) after creep-rupture testing at 1000 °C (1832
More
Image
Published: 01 July 2009
Fig. 1.22 Creep-rate response in tension and compression of a cyclic creep-rupture test of 316 stainless steel (heat 1) at 705 °C (1300 °F). Source: Ref 1.62
More
Image
Published: 01 July 2009
Fig. 1.23 Comparison of tensile/compressive creep rates of a cyclic creep-rupture test of 316 stainless steel (heat 2) at 705 °C (1300 °F). Source: Ref 1.62
More
Image
Published: 01 November 2007
Fig. 4.6 Acicular nitrides (believed to be chromium nitrides) in a Widmanstätten pattern formed in the vicinity of creep cracks in Type 302SS after creep-rupture testing at 870 °C (1600 °F) in less than 1000 h. Original magnification, 500×. Source: Ref 30
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430409
EISBN: 978-1-62708-253-2
... Code—2017, are collected for destructive tests such as tensile and impact tests, creep rupture tests, flattening tests, and chemical analysis. The following are brief descriptions on the scope of some of the tests carried out in an RLA of boiler tubes ( Ref 8.2 , 8.4 , 8.5 ). Detailed discussion...
Abstract
The power generating industry has become proficient at predicting how long a component will last under a given set of operating conditions. This chapter explains how such predictions are made in the case of boiler tubes. It identifies critical damage mechanisms, progressive failure pathways, and relevant test and measurement procedures. It describes life assessment methods based on hardness, wall thickness, scale formation, microstructure, and creep. It also includes a case study on the determination of the residual life of a secondary superheater tube.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060001
EISBN: 978-1-62708-343-0
... strain and strain rate equations, explains how to determine creep constants, and reviews the findings of several studies on cyclic loading. It also discusses the development of a novel test that measures the cyclic creep-rupture resistance of materials in tension and compression. activation energy...
Abstract
This chapter familiarizes readers with the mechanisms involved in creep and how they are related to fatigue behavior. It explains that what we observe as creep deformation is the gradual displacement of atoms in the direction of an applied stress aided by diffusion, dislocation movement, and grain boundary sliding. It describes these mechanisms in qualitative terms, explaining how they are driven by thermal energy and how they can be analyzed using creep curves and deformation maps. In addition, it examines the types of damage associated with creep, presents a number of creep strain and strain rate equations, explains how to determine creep constants, and reviews the findings of several studies on cyclic loading. It also discusses the development of a novel test that measures the cyclic creep-rupture resistance of materials in tension and compression.
Image
Published: 01 December 1995
Fig. 6-36 Larson-Miller plots of stress rupture and minimum creep rate test results of cast corrosion-resistant alloy CA-6NM at 900 and 1000 °F (482 and 538 °C) ( 47 )
More
Image
Published: 01 December 1995
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610415
EISBN: 978-1-62708-303-4
... Abstract This chapter compares and contrasts the high-temperature behaviors of metals and composites. It describes the use of creep curves and stress-rupture testing along with the underlying mechanisms in creep deformation and elevated-temperature fracture. It also discusses creep-life...
Abstract
This chapter compares and contrasts the high-temperature behaviors of metals and composites. It describes the use of creep curves and stress-rupture testing along with the underlying mechanisms in creep deformation and elevated-temperature fracture. It also discusses creep-life prediction and related design methods and some of the factors involved in high-temperature fatigue, including creep-fatigue interaction and thermomechanical damage.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240265
EISBN: 978-1-62708-251-8
... information on the stress-rupture test used to measure the time it takes for a metal to fail at a given stress at elevated temperature. The major classes of creep mechanism, namely Nabarro-Herring creep and Coble creep, are then covered. The chapter also provides information on three primary modes of elevated...
Abstract
Creep occurs in any metal or alloy at a temperature where atoms become sufficiently mobile to allow the time-dependent rearrangement of structure. This chapter begins with a section on creep curves, covering the three distinct stages: primary, secondary, and tertiary. It then provides information on the stress-rupture test used to measure the time it takes for a metal to fail at a given stress at elevated temperature. The major classes of creep mechanism, namely Nabarro-Herring creep and Coble creep, are then covered. The chapter also provides information on three primary modes of elevated fracture, namely, rupture, transgranular fracture, and intergranular fracture. The next section focuses on some of the metallurgical instabilities caused by overaging, intermetallic phase precipitation, and carbide reactions. Subsequent sections address creep life prediction and creep-fatigue interaction and the approaches to design against creep.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490059
EISBN: 978-1-62708-340-9
... how to deal with time dependent deformation in design, how to estimate cumulative damage under changing conditions, and how to assess the effect of multiaxial stress based on uniaxial test data. It also includes information on rupture ductility, creep fracture, and creep-crack growth and their effect...
Abstract
This chapter provides a detailed overview of the creep behavior of metals and how to account for it when determining the remaining service life of components. It begins with a review of creep curves, explaining how they are plotted and what they reveal about the operating history, damage mechanisms, and structural integrity of the test sample. In the sections that follow, it discusses the effects of stress and temperature on creep rate, the difference between diffusional and dislocation creep, and the use of time-temperature-stress parameters for data extrapolation. It explains how to deal with time dependent deformation in design, how to estimate cumulative damage under changing conditions, and how to assess the effect of multiaxial stress based on uniaxial test data. It also includes information on rupture ductility, creep fracture, and creep-crack growth and their effect on component life and performance.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280211
EISBN: 978-1-62708-267-9
... at the conclusion of a test is recorded. Static modulus generally is not measured, at least in tests designed to produce strength data. Creep-rupture properties are determined by longer-time, sometimes long-time, tests of metal under load, where the elongation generally is measured with time. Failure elongation...
Abstract
This chapter examines the effect of heat treating and other processes on the microstructure-property relationships that occur in superalloys. It discusses precipitation and grain-boundary hardening and how they influence the phases, structures, and properties of various alloys. It explains how the delta phase, which is used to control grain size in IN-718, improves strength and prevents stress-rupture embrittlement. It describes heat treatments for different product forms, discusses the effect of tramp elements on grain-boundary ductility, and explains how section size and test location influence measured properties. It also provides information and data on the physical and mechanical properties of superalloys, particularly tensile strength, creep-rupture, fatigue, and fracture, and discusses related factors such as directionality, porosity, orientation, elongation, and the effect of coating and welding processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060083
EISBN: 978-1-62708-343-0
... true plastic ductility, D p (from standardized tensile tests at temperature), and true creep-rupture ductility, D c (from conventional creep-rupture tests), are required. True ductility is calculated from measured percent reduction of area (RA) values measured on circular cross-sectional tensile...
Abstract
This chapter compares and contrasts empirical approaches for partitioning hysteresis loops and predicting creep-fatigue life. The first part of the chapter presents experimental partitioning methods, explaining how they can be used to partition any loading cycle into its basic strain-range components. The methods covered include rapid cycling between peak stress extremes, half-cycle rapid loading and unloading, and variations of the incremental step-stress approach. The methods are then compared based on their ability to predict creep-fatigue life. The chapter goes on from there to describe how fatigue life can be estimated from ductility measurements when cyclic data are unavailable or are likely to change. It also explains how cyclic life is influenced by the time-dependent nature of creep-plasticity and the physical and metallurgical effects of environmental exposure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060021
EISBN: 978-1-62708-343-0
... a large collection of creep-rupture data corresponding to different alloy designations and heat treatments, identifying key relationships, similarities, and differences. It also presents a test method developed by the authors in which twelve materials are tested over a range of temperature, stress...
Abstract
This chapter focuses on creep-rupture failure, or more precisely, the time required for such a failure to occur at a given stress and temperature. It begins with a review of creep-rupture phenomena and the various ways creep-rupture data are presented and analyzed. It then examines a large collection of creep-rupture data corresponding to different alloy designations and heat treatments, identifying key relationships, similarities, and differences. It also presents a test method developed by the authors in which twelve materials are tested over a range of temperature, stress, and time in order to determine multiheat constants that are then used to fit multiheat data from other materials and thus estimate rupture times.
1