Skip Nav Destination
Close Modal
Search Results for
creep model
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 205 Search Results for
creep model
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
in Deformation and Fracture Mechanisms and Static Strength of Metals
> Mechanics and Mechanisms of Fracture: An Introduction
Published: 01 August 2005
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060173
EISBN: 978-1-62708-343-0
...Material constants used in oxidation-creep-thermomechanical fatigue model Table 8.1 Material constants used in oxidation-creep-thermomechanical fatigue model Material constants used in oxidation damage term a ′ 0.75 β 1.5 B 6.93 × 10 −3 s −0.5 δ 0 2.16 × 10 −10 μm...
Abstract
This chapter provides a detailed review of creep-fatigue analysis techniques, including the 10% rule, strain-range partitioning, several variants of the frequency-modified life equation, damage assessment based on tensile hysteresis energy, the OCTF (oxidation, creep, and thermomechanical fatigue) damage model, and numerous methods that make use of creep-rupture, crack-growth, and void-growth data. It also discusses the use of continuum damage mechanics and includes examples demonstrating the accuracy of each method as well as the procedures involved.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060001
EISBN: 978-1-62708-343-0
... printing , 1990 1.11 Raj S.V. Iskovitz I.S. and Freed A.D. , Modeling the Role of Dislocations Substructure during Class M and Exponential Creep , Unified Constitutive Laws of Plastic Deformation , Krausz A.S. and Krausz K. , Ed., Academic Press , San Diego , 1996...
Abstract
This chapter familiarizes readers with the mechanisms involved in creep and how they are related to fatigue behavior. It explains that what we observe as creep deformation is the gradual displacement of atoms in the direction of an applied stress aided by diffusion, dislocation movement, and grain boundary sliding. It describes these mechanisms in qualitative terms, explaining how they are driven by thermal energy and how they can be analyzed using creep curves and deformation maps. In addition, it examines the types of damage associated with creep, presents a number of creep strain and strain rate equations, explains how to determine creep constants, and reviews the findings of several studies on cyclic loading. It also discusses the development of a novel test that measures the cyclic creep-rupture resistance of materials in tension and compression.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060083
EISBN: 978-1-62708-343-0
... of creep-plasticity and the physical and metallurgical effects of environmental exposure. References References 5.1 Miller A.K. , A Realistic Model for the Deformation Behavior of High-Temperature Materials , Fatigue at Elevated Temperatures, STP 520 , American Society for Testing...
Abstract
This chapter compares and contrasts empirical approaches for partitioning hysteresis loops and predicting creep-fatigue life. The first part of the chapter presents experimental partitioning methods, explaining how they can be used to partition any loading cycle into its basic strain-range components. The methods covered include rapid cycling between peak stress extremes, half-cycle rapid loading and unloading, and variations of the incremental step-stress approach. The methods are then compared based on their ability to predict creep-fatigue life. The chapter goes on from there to describe how fatigue life can be estimated from ductility measurements when cyclic data are unavailable or are likely to change. It also explains how cyclic life is influenced by the time-dependent nature of creep-plasticity and the physical and metallurgical effects of environmental exposure.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060043
EISBN: 978-1-62708-343-0
... 3.1 Fig. 3.3 Simple cyclic deformation models for strain-range partitioning Fig. 3.2 Schematic illustration of creep-fatigue interaction when tensile creep occurring along grain boundaries is reversed by compressive plasticity occurring along crystallographic slip planes...
Abstract
Strain-range partitioning is a method for assessing the effects of creep fatigue based on inelastic strain paths or strain reversals. The first part of the chapter defines four distinct strain paths that can be used to model any cyclic loading pattern and describes the microstructural damages associated with each of the four basic loading cycles. The discussion then turns to fatigue life prediction for different types of materials and more realistic loading conditions, particularly those in which hysteresis loops have more than one strain-range component. To that end, the chapter considers two cases. In one, the relationship between strain range and cyclic life is established from test data. In the other, a rule is required to determine the damage of each concurrent strain and the total damage of the cycle is used to predict creep-fatigue life. The chapter presents several such damage rules and discusses their applicability in different situations.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060111
EISBN: 978-1-62708-343-0
.... , “An Evaluation of Four Current Models to Predict the Creep-Fatigue Interaction in René 95,” AFML-TR-79-4075, 1979 6.24 Manson S.S. , “Behavior of Materials under Conditions of Thermal Stress,” Lecture presented at Symposium on Heat Transfer, University of Michigan , June 27–28 , 1952 . See...
Abstract
This chapter explains why it is sometimes necessary to separate inelastic from elastic strains and how to do it using one of two methods. It first discusses the direct calculation of strain-range components from experimental data associated with large strains. It then explains how the method can be extended to the treatment of very low inelastic strains by adjusting tensile and compressive hold periods and continuous cycling frequencies. The chapter then begins the presentation of the second approach, called the total strain-range method, so named because it combines elastic and inelastic strain into a total strain range. The discussion covers important features, procedures, and correlations as well as the use of models and the steps involved in predicting thermomechanical fatigue (TMF) life. It also includes information on isothermal fatigue, bithermal creep-fatigue testing, and the predictability of the method for TMF cycling.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490059
EISBN: 978-1-62708-340-9
... and Materials , Philadelphia , 1956 44. Manson S.S. and Ensign C.R. , “ A Specialized Model for Analysis of Creep Rupture Data by the Minimum Commitment Method, ” NASA Tech. Memo TMX 52999, Washington , 1971 45. Manson S.S. and Muralidharan U. , “ Analysis of Creep...
Abstract
This chapter provides a detailed overview of the creep behavior of metals and how to account for it when determining the remaining service life of components. It begins with a review of creep curves, explaining how they are plotted and what they reveal about the operating history, damage mechanisms, and structural integrity of the test sample. In the sections that follow, it discusses the effects of stress and temperature on creep rate, the difference between diffusional and dislocation creep, and the use of time-temperature-stress parameters for data extrapolation. It explains how to deal with time dependent deformation in design, how to estimate cumulative damage under changing conditions, and how to assess the effect of multiaxial stress based on uniaxial test data. It also includes information on rupture ductility, creep fracture, and creep-crack growth and their effect on component life and performance.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610415
EISBN: 978-1-62708-303-4
... as the amount of creep strain increases over time. Power Law Model of Steady-State Creep Rates In the intermediate-temperature regime (0.4 T m < T < 0.6 T m ), the creep rate varies nonlinearly with stress, as either a power function or an exponential function of stress. At stresses...
Abstract
This chapter compares and contrasts the high-temperature behaviors of metals and composites. It describes the use of creep curves and stress-rupture testing along with the underlying mechanisms in creep deformation and elevated-temperature fracture. It also discusses creep-life prediction and related design methods and some of the factors involved in high-temperature fatigue, including creep-fatigue interaction and thermomechanical damage.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430409
EISBN: 978-1-62708-253-2
... , American Society for Mechanical Engineers , 1983 , p 307 – 314 8.13 Shammas M. et al ., “ Remaining Life of Boiler Pressure Parts, HAZ Models ,” Final Report RP 2253-1, Vol 2 , Electric Power Research Institute , 1988 8.14 Needham N.G. and Cane B.J. , Creep Strain...
Abstract
The power generating industry has become proficient at predicting how long a component will last under a given set of operating conditions. This chapter explains how such predictions are made in the case of boiler tubes. It identifies critical damage mechanisms, progressive failure pathways, and relevant test and measurement procedures. It describes life assessment methods based on hardness, wall thickness, scale formation, microstructure, and creep. It also includes a case study on the determination of the residual life of a secondary superheater tube.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280339
EISBN: 978-1-62708-267-9
... deformation by making it more difficult for dislocation bypassing to occur. It has been shown for some alloys (commercial and model) that effective creep-rupture strengthening is achieved by rafting. The difficulty in applying the technique lies in the geometry of the components and the long times or pre...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490183
EISBN: 978-1-62708-340-9
..., ” Report RP 2253-1, Vol 3 , Electric Power Research Institute , Palo Alto, CA , 1988 44. Brear J.M. , Bruce S. , Silcox J.M. , and Cane B.J. , “ Models for Determination of Creep Curves in Low Alloy Ferritic Steels Based on Carbide Coarsening, ” EPRI RP 2253-1, Report P2...
Abstract
This chapter covers the failure modes and mechanisms associated with boiler components and the tools and techniques used to assess damages and predict remaining component life. It begins with a review of the design and operation of a utility boiler and the materials used in construction. It then describes the various causes of failure in boiler tubes, headers, and steam pipes, explaining how and why they occur, how they are diagnosed, and how to mitigate their effects. The final and by far largest section in the chapter is a tutorial on damage and life assessment techniques for boiler components and assemblies. It demonstrates the use of various methods, including analytical techniques that estimate life expenditure based on operating history, component geometry, and material properties; predictive methods based on the extrapolation of failure statistics; methods that predict life based on dimensional measurements; methods based on metallographic studies; methods based on temperature estimates; and a method for estimating remaining life under creep conditions based on stress-rupture testing of service-exposed material samples. The chapter also discusses the use of fracture mechanics and presents a number of cases in which life assessments are made based on the integration of several methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540281
EISBN: 978-1-62708-309-6
... Abstract Large-scale yielding at the crack tip and time-dependent crack growth mechanisms, such as stress relaxation due to creep, are nonlinear behaviors requiring nonlinear analysis methods. This chapter presents two such methods, one based on elastic-plastic fracture mechanics, the other...
Abstract
Large-scale yielding at the crack tip and time-dependent crack growth mechanisms, such as stress relaxation due to creep, are nonlinear behaviors requiring nonlinear analysis methods. This chapter presents two such methods, one based on elastic-plastic fracture mechanics, the other on time-dependent fracture mechanics. It also introduces two new fracture indices, the J-integral for handling large-scale yielding and the C*-integral for creep crack growth, providing close-form and handbook solutions for each.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930163
EISBN: 978-1-62708-359-1
... Abstract Depending on the operating environment and the nature of the applied loading, a structure can fail by a number of different modes, including brittle fracture, ductile fracture, plastic collapse, fatigue, creep, corrosion, and buckling. These failure modes can be broken down...
Abstract
Depending on the operating environment and the nature of the applied loading, a structure can fail by a number of different modes, including brittle fracture, ductile fracture, plastic collapse, fatigue, creep, corrosion, and buckling. These failure modes can be broken down into the categories of fracture, fatigue, environmental cracking, and high-temperature creep. This article discusses each of these categories, as well as the benefits of a fitness-for-service approach.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490111
EISBN: 978-1-62708-340-9
... of Gas Turbine Bucket Alloys , in First Parsons International Turbine Conference , Dublin, Ireland , June 1984 , p 157 - 164 150. Bernstein H.L. , “ An Evaluation of Four Current Models to Predict the Creep Fatigue Interaction in Rene 95, ” Report AFML-TR 79.4075, U.S. Air Force...
Abstract
This chapter describes the phenomenological aspects of fatigue and how to assess its effect on the life of components operating in high-temperature environments. It explains how fatigue is measured and expressed and how it is affected by loading conditions (stress cycles, amplitude, and frequency) and factors such as temperature, material defects, component geometry, and processing history. It provides a detailed overview of the damage mechanisms associated with high-cycle and low-cycle fatigue as well as thermal fatigue, creep-fatigue, and fatigue-crack growth. It also demonstrates the use of tools and techniques that have been developed to quantify fatigue-related damage and its effect on the remaining life of components.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090191
EISBN: 978-1-62708-266-2
... on predictive modeling as well. corrosion potential Irradiation-assisted stress-corrosion cracking predictive model radiation damage radiation-induced segregation stainless steel IRRADIATION-ASSISTED STRESS-CORROSION CRACKING (IASCC) describes premature cracking of material/environment systems...
Abstract
Irradiation-assisted stress-corrosion cracking (IASCC) has been a topic of engineering interest since it was first reported in the 1960s, having been observed in stainless steel cladding on light water reactor fuel elements. This chapter summarizes the results of decades of investigation, showing that IASCC can essentially be defined as the intergranular cracking of austenitic alloys in high-temperature water, where both the material and its environment have been altered by radiation. Of the many interactions that can occur when metals and water are exposed to radiation, the international consensus is that the three with the greatest impact on crack growth rates are the formation of material defects, radiation-induced segregation, and chemical reactions that increase the corrosion potential of water. The chapter discusses each of these in great detail, and includes information on predictive modeling as well.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780199
EISBN: 978-1-62708-281-5
... occurs under constant stress or load, stress relaxation occurs under constant strain or displacement and may be viewed as creep under a constantly decreasing stress. A simple model for the relationship between creep and stress relaxation is presented. In stress relaxation, a specimen is generally...
Abstract
This article describes the general aspects of and practical problems of failure analysis of creep, stress relaxation, and yielding for homogeneous polymers. The effect of temperature and strain rate on the relationship between yield point and elastic modulus and the aging effect that polymers often undergo at room temperature are also discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060223
EISBN: 978-1-62708-343-0
... within the matrix. Currently, modelers are working hard at understanding and attempting to accurately model these responses. At higher use temperatures, the matrix material will become more time dependent in its creep and relaxation response. Thermally induced strains in the matrix caused...
Abstract
Fiber-reinforced metal-matrix composites have carved out a niche in applications requiring high strength to weight ratios, but they are susceptible to failure when exposed to high temperatures and cyclic loads. This chapter discusses the obstacles that must be overcome to improve the creep-fatigue behavior of these otherwise promising materials. It addresses six areas that have been the focus of intense research, including thermal-expansion and elastic-viscoplastic mismatch, thermally induced biaxiality and interply stresses, creep and cyclic relaxation of residual stresses, and enhanced interfaces for oxidation.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.9781627083409
EISBN: 978-1-62708-340-9
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780185
EISBN: 978-1-62708-281-5
... in plastics Creep curves generally exhibit three distinct phases. First-stage creep deformation is characterized by a rapid deformation rate that decreases slowly to a constant value. The four-parameter model was proposed to describe long-term creep. In this model, the first-stage creep deformation...
Abstract
This article briefly introduces some commonly used methods of mechanical testing of plastics for determining mechanical properties, also describing the test methods and providing comparative data for the mechanical property tests. In addition, creep testing and dynamic mechanical analyses of viscoelastic plastics are briefly described. The discussion covers the most commonly used tests for impact performance, various types of hardness test for plastics, the fatigue strength of viscoelastic materials, and the tension testing of elastomers and fibers.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490415
EISBN: 978-1-62708-340-9
... in area, % 2 2 0 (a) 50% increase. Estimated uncertainty factors in life prediction Table 9.4. Estimated uncertainty factors in life prediction Cause of uncertainty Factor of uncertainty (a) Creep-rupture life Thermal-fatigue life Factor Basis of estimate...
Abstract
Combustion turbines consist of a compressor, a combustor, and a turbine. As commonly configured, the compressor and turbine mount on a single shaft that connects directly to a generator. This chapter reviews the materials of construction, damage mechanisms, and life-assessment techniques for nozzles and buckets. It also presents key information from a detailed review of the literature and the results of a survey on combustion-turbine material problems.