Skip Nav Destination
Close Modal
By
D.M. Norfleet, J.A. Beavers
By
R.H. Jones
By
D.M. Norfleet, J.A. Beavers
Search Results for
cracking
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2917
Search Results for cracking
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Stress-Corrosion Cracking
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030126
EISBN: 978-1-62708-282-2
... Abstract This chapter focuses on stress-corrosion cracking (SCC) of metals and their alloys. It is intended to familiarize the reader with the phenomenological and mechanistic aspects of stress corrosion. The phenomenological description of crack initiation and propagation describes well...
Abstract
This chapter focuses on stress-corrosion cracking (SCC) of metals and their alloys. It is intended to familiarize the reader with the phenomenological and mechanistic aspects of stress corrosion. The phenomenological description of crack initiation and propagation describes well-established experimental evidence and observations of stress corrosion, while the discussions on mechanisms describe the physical process involved in crack initiation and propagation. Several parameters that are known to influence the rate of crack growth in aqueous solutions are presented, along with important fracture features.
Book Chapter
Environmentally Assisted Cracking
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870099
EISBN: 978-1-62708-299-0
... Abstract Environmentally assisted cracking is a generic term that includes various cracking phenomena such as stress-corrosion cracking (SCC), corrosion fatigue cracking, and liquid-metal embrittlement. This chapter describes these cracking mechanisms beginning with SCC and the factors...
Abstract
Environmentally assisted cracking is a generic term that includes various cracking phenomena such as stress-corrosion cracking (SCC), corrosion fatigue cracking, and liquid-metal embrittlement. This chapter describes these cracking mechanisms beginning with SCC and the factors that influence its formation. It covers alloy selection and mitigation techniques and includes examples of SCC in aircraft components. The chapter also addresses corrosion fatigue, explaining how different environments and operating conditions affect crack propagation, fatigue strength, and fatigue life. It includes information on liquid-metal embrittlement as well.
Book Chapter
Cracking in the Wing Root Fitting in an Aircraft
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270146
EISBN: 978-1-62708-301-0
... Abstract During a major servicing of an aircraft, cracks were found in the bottom wing root fitting. Based on dye penetrant inspection and the results of SEM fractography and chemical analysis, investigators concluded that the cracks were due to stress corrosion. They also recommended...
Abstract
During a major servicing of an aircraft, cracks were found in the bottom wing root fitting. Based on dye penetrant inspection and the results of SEM fractography and chemical analysis, investigators concluded that the cracks were due to stress corrosion. They also recommended an inspection of all other aircraft with similar fittings and the consideration of alternate materials that are less prone to stress-corrosion cracking.
Book Chapter
Cracking of the Skin in the Main Rotor Blade in a Helicopter
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270154
EISBN: 978-1-62708-301-0
... Abstract The aluminum alloy skin on the main rotor blade of a helicopter tore off in flight, and an investigation was subsequently conducted to find the cause. Visual examination and SEM fractography revealed that a fatigue crack originated on the underside of a rivet hole at the trailing edge...
Abstract
The aluminum alloy skin on the main rotor blade of a helicopter tore off in flight, and an investigation was subsequently conducted to find the cause. Visual examination and SEM fractography revealed that a fatigue crack originated on the underside of a rivet hole at the trailing edge of the blade. The crack then propagated through the outer skin toward the leading edge of the blade. Once the fatigue crack reached critical length, the sheet metal fractured catastrophically, tearing away from the blade.
Book Chapter
Cracking in a Tail Rotor Blade in a Helicopter
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270156
EISBN: 978-1-62708-301-0
... Abstract The tail rotor blade of a helicopter developed a visible crack during service. The cracked region was removed from the blade and the fracture surface was examined in a SEM, revealing shallow pitting on the inside surface of the skin and a corresponding reduction in thickness. Based...
Abstract
The tail rotor blade of a helicopter developed a visible crack during service. The cracked region was removed from the blade and the fracture surface was examined in a SEM, revealing shallow pitting on the inside surface of the skin and a corresponding reduction in thickness. Based on these findings, investigators concluded that the failure was due to a fatigue crack initiated from a corrosion pit, which may have been caused by chemicals released by the burning of bonding resin.
Book Chapter
Cracking of Filter Components in an Aircraft
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270165
EISBN: 978-1-62708-301-0
... Abstract Two filtration components installed on a developmental aircraft cracked during pressure impulse testing. Both parts were made from an aluminum alloy, solutionized and aged, and cracked due to fatigue. In both cases, the crack initiated at a transition region on an inner surface...
Abstract
Two filtration components installed on a developmental aircraft cracked during pressure impulse testing. Both parts were made from an aluminum alloy, solutionized and aged, and cracked due to fatigue. In both cases, the crack initiated at a transition region on an inner surface and progressed circumferentially outward. Based on these observations and the results of SEM fractography and microstructural analysis, the fatigue cracking can be traced to insufficient fillet radius at the transition zone.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090001
EISBN: 978-1-62708-266-2
... Abstract This chapter discusses the conditions and sequence of events that lead to stress-corrosion cracking (SCC) and the mechanisms by which it progresses. It explains that the stresses involved in SCC are relatively small and, in most cases, work in combination with the development...
Abstract
This chapter discusses the conditions and sequence of events that lead to stress-corrosion cracking (SCC) and the mechanisms by which it progresses. It explains that the stresses involved in SCC are relatively small and, in most cases, work in combination with the development of a surface film. It describes bulk and surface reactions that contribute to SCC, including dissolution, mass transport, absorption, diffusion, and embrittlement, and their role in crack nucleation and growth. It also discusses crack tip chemistry, grain-boundary interactions, and the effect of stress-intensity on crack propagation rates, and describes several mechanical fracture models, including corrosion tunnel, film-induced cleavage, and tarnish rupture models.
Book Chapter
Stress-Corrosion Cracking of Carbon and Low-Alloy Steels (Yield Strengths Less Than 1241 MPa)
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090043
EISBN: 978-1-62708-266-2
... Abstract This chapter addresses the issue of stress-corrosion cracking (SCC) in carbon and low-alloy steels. It discusses crack initiation, propagation, and fracture in aqueous chloride, hydrogen sulfide, sulfuric acid, hydroxide, ammonia, nitrate, ethanol, methanol, and hydrogen gas...
Abstract
This chapter addresses the issue of stress-corrosion cracking (SCC) in carbon and low-alloy steels. It discusses crack initiation, propagation, and fracture in aqueous chloride, hydrogen sulfide, sulfuric acid, hydroxide, ammonia, nitrate, ethanol, methanol, and hydrogen gas environments. It explains how composition and microstructure influence SCC, as do mechanical properties such as strength and fracture toughness and processes such as welding and cold work. It also discusses the role of materials selection and best practices for welding.
Book Chapter
Stress-Corrosion Cracking of High-Strength Steels (Yield Strengths Greater Than 1240 MPa)
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090067
EISBN: 978-1-62708-266-2
... Abstract High-strength steels are susceptible to stress-corrosion cracking (SCC) even in moist air. This chapter identifies such steels and the applications where they are typically found. It provides information on crack growth kinetics and crack propagation models in which hydrogen...
Abstract
High-strength steels are susceptible to stress-corrosion cracking (SCC) even in moist air. This chapter identifies such steels and the applications where they are typically found. It provides information on crack growth kinetics and crack propagation models in which hydrogen embrittlement is the predominant mechanism. It explains how different application variables affect SCC, including loading mode, state of stress, type of steel, temperature, electrochemical potential, heat treatment, and deformation processes. It also compares SCC characteristics in different high-strength steels and discusses the influence of composition, steelmaking practice, and application environment.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090095
EISBN: 978-1-62708-266-2
... Abstract This chapter takes a practical approach to the problem of stress-corrosion cracking (SCC) in stainless steels, explaining how different application environments affect different grades of stainless steel. It describes the causes of stress-corrosion cracking in chloride, caustic...
Abstract
This chapter takes a practical approach to the problem of stress-corrosion cracking (SCC) in stainless steels, explaining how different application environments affect different grades of stainless steel. It describes the causes of stress-corrosion cracking in chloride, caustic, polythionic acid, and high-temperature environments and the correlating effects on austenitic, ferritic, duplex, martensitic, and precipitation hardening stainless steels and nickel-base alloys. It also discusses the contributing effects of sensitization and hydrogen embrittlement and the role of composition, microstructure, and thermal history. Sensitization is particularly detrimental to austenitic stainless steels, and in many cases, eliminating it will eliminate the susceptibility to SCC. The chapter includes an extensive amount of data and illustrations.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090135
EISBN: 978-1-62708-266-2
... Abstract Nickel and nickel-base alloys are specified for many applications, such as oil and gas production, power generation, and chemical processing, because of their resistance to stress-corrosion cracking (SCC). Under certain conditions, however, SCC can be a concern. This chapter describes...
Abstract
Nickel and nickel-base alloys are specified for many applications, such as oil and gas production, power generation, and chemical processing, because of their resistance to stress-corrosion cracking (SCC). Under certain conditions, however, SCC can be a concern. This chapter describes the types of environments and stress loads where nickel-base alloys are most susceptible to SCC. It begins with a review of the physical metallurgy of nickel alloys, focusing on the role of carbides and intermetallic phases. It then explains how SCC occurs in the presence of halides (such as chlorides, bromides, iodides, and fluorides), sulfur-bearing compounds (such as H2S and sulfur-oxyanions), high-temperature and supercritical water, and caustics (such as NaOH), while accounting for temperature, composition, microstructure, properties, environmental contaminants, and other factors. The chapter also discusses the effects of hydrogen embrittlement and provides information on test methods.
Book Chapter
Irradiation-Assisted Stress-Corrosion Cracking
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090191
EISBN: 978-1-62708-266-2
... Abstract Irradiation-assisted stress-corrosion cracking (IASCC) has been a topic of engineering interest since it was first reported in the 1960s, having been observed in stainless steel cladding on light water reactor fuel elements. This chapter summarizes the results of decades...
Abstract
Irradiation-assisted stress-corrosion cracking (IASCC) has been a topic of engineering interest since it was first reported in the 1960s, having been observed in stainless steel cladding on light water reactor fuel elements. This chapter summarizes the results of decades of investigation, showing that IASCC can essentially be defined as the intergranular cracking of austenitic alloys in high-temperature water, where both the material and its environment have been altered by radiation. Of the many interactions that can occur when metals and water are exposed to radiation, the international consensus is that the three with the greatest impact on crack growth rates are the formation of material defects, radiation-induced segregation, and chemical reactions that increase the corrosion potential of water. The chapter discusses each of these in great detail, and includes information on predictive modeling as well.
Book Chapter
Stress-Corrosion Cracking of Copper Alloys
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090221
EISBN: 978-1-62708-266-2
... Abstract This chapter describes the conditions under which copper-base alloys are susceptible to stress-corrosion cracking (SCC) and some of the environmental factors, such as temperature, pH, and corrosion potential, that influence crack growth and time to failure. It explains that, although...
Abstract
This chapter describes the conditions under which copper-base alloys are susceptible to stress-corrosion cracking (SCC) and some of the environmental factors, such as temperature, pH, and corrosion potential, that influence crack growth and time to failure. It explains that, although most of the literature has been concerned with copper zinc alloys in ammoniacal solutions, there are a number of alloy-environment combinations where SCC has been observed. The chapter discusses several of these cases and the effect of various application parameters, including composition, microstructure, heat treatment, cold working, and stress intensity. It also provides information on stress-corrosion testing, mitigation techniques, and basic cracking mechanisms.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090241
EISBN: 978-1-62708-266-2
... Abstract Aluminum is protected by a barrier oxide film that, if damaged, reforms immediately in most environments. Despite this inherent corrosion resistance, there are conditions where aluminum alloys, like many materials, are subject to the effects of stress-corrosion cracking (SCC...
Abstract
Aluminum is protected by a barrier oxide film that, if damaged, reforms immediately in most environments. Despite this inherent corrosion resistance, there are conditions where aluminum alloys, like many materials, are subject to the effects of stress-corrosion cracking (SCC). This chapter describes those conditions, focusing initially on the effects of alloying elements and temper on solution potential and how it compares to other metals. It then addresses the issue of intergranular corrosion and its role in SCC. It explains how factors such as stress loads, grain structure, and environment determine whether or not stress-corrosion cracking develops in a susceptible alloy. It also provides stress-corrosion ratings for many alloys, tempers, and product forms and includes information on hydrogen-induced cracking.
Book Chapter
Stress-Corrosion Cracking of Magnesium Alloys
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090257
EISBN: 978-1-62708-266-2
... Abstract Stress-corrosion cracking (SCC) in magnesium alloys was first reported in the 1930s and, within ten years, became the focus of intense study. This chapter provides a summary of all known work published since then on the nature of SCC in magnesium alloys and how it is related...
Abstract
Stress-corrosion cracking (SCC) in magnesium alloys was first reported in the 1930s and, within ten years, became the focus of intense study. This chapter provides a summary of all known work published since then on the nature of SCC in magnesium alloys and how it is related to composition, microstructure, and heat treatment. It describes the types of environments where magnesium alloys are most susceptible to SCC and the effect of contributing factors such as temperature, strain rate, and applied and residual stresses. The chapter also discusses crack morphology and what it reveals, provides information on proposed cracking mechanisms, and presents a practical approach for preventing SCC.
Book Chapter
Stress-Corrosion Cracking of Titanium Alloys
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090271
EISBN: 978-1-62708-266-2
... Abstract Titanium alloys are generally resistant to stress-corrosion cracking (SCC), but under certain conditions, the potential for problems exists. This chapter identifies the types of service environments where titanium alloys have exhibited signs of SCC. It begins by describing the nominal...
Abstract
Titanium alloys are generally resistant to stress-corrosion cracking (SCC), but under certain conditions, the potential for problems exists. This chapter identifies the types of service environments where titanium alloys have exhibited signs of SCC. It begins by describing the nominal composition, designation, and grade of nearly two dozen commercial titanium alloys and the different types of media (including oxidizers, organic compounds, hot salt, and liquid metal) in which SCC has been observed. It discusses the mechanical and metallurgical factors that influence SCC behavior and examines the cracking and fracture mechanisms that appear to be involved. The chapter also includes information on SCC test standards and provides detailed guidelines on how to prevent or mitigate the effects of SCC.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090303
EISBN: 978-1-62708-266-2
... Abstract Although zirconium resists stress-corrosion cracking (SCC) where many alloys fail, it is susceptible in Fe3+- and Cu2+-containing solutions, concentrated HNO3, halogen vapors, mercury, cesium, and CH3OH + halides. This chapter explains how composition, texture, stress levels...
Abstract
Although zirconium resists stress-corrosion cracking (SCC) where many alloys fail, it is susceptible in Fe3+- and Cu2+-containing solutions, concentrated HNO3, halogen vapors, mercury, cesium, and CH3OH + halides. This chapter explains how composition, texture, stress levels, and strain rate affect the SCC behavior of zirconium and its alloys. It describes environments known to induce SCC, including aqueous solutions, organic liquids, hot and fused salts, and liquid metals. It also discusses cracking mechanisms and SCC prevention and control techniques.
Book Chapter
Environmentally Assisted Cracking of Uranium Alloys
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090317
EISBN: 978-1-62708-266-2
... Abstract Uranium alloys are used in applications requiring dense metals, but they have little resistance to oxidation and corrosion and are susceptible to environmentally assisted cracking, particularly when processed to high strength levels. This chapter describes the conditions under which...
Abstract
Uranium alloys are used in applications requiring dense metals, but they have little resistance to oxidation and corrosion and are susceptible to environmentally assisted cracking, particularly when processed to high strength levels. This chapter describes the conditions under which uranium alloys are most prone to cracking. It discusses testing and characterization methods, cracking phenomenology, material properties, and microstructure. It also provides suggestions for avoiding and overcoming environmentally assisted cracking problems.
Book Chapter
Stress-Corrosion Cracking of Amorphous Alloys
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090333
EISBN: 978-1-62708-266-2
... Abstract Amorphous alloys, because of their lack of crystallographic slip planes, are assumed to be insensitive to the selective corrosion attack that causes stress-corrosion cracking (SCC) in crystalline alloys. However, under certain conditions, melt-spun amorphous alloys have proven...
Abstract
Amorphous alloys, because of their lack of crystallographic slip planes, are assumed to be insensitive to the selective corrosion attack that causes stress-corrosion cracking (SCC) in crystalline alloys. However, under certain conditions, melt-spun amorphous alloys have proven vulnerable to SCC due to hydrogen embrittlement. This chapter presents findings from several studies on this phenomenon, describing test conditions as well as cracking and fracture behaviors. It also discusses the effect of deformation on corrosion behavior, particularly for alloys without strongly passivating elements.
Book Chapter
Stress-Corrosion Cracking of Glasses and Ceramics
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090341
EISBN: 978-1-62708-266-2
... Abstract Glasses and ceramics are susceptible to stress-corrosion cracking (SCC), as are metals, but the underlying mechanisms differ in many ways. One of the major differences stems from the lack of active dislocation motion that, in metals, serves to arrest cracks by reducing stress...
Abstract
Glasses and ceramics are susceptible to stress-corrosion cracking (SCC), as are metals, but the underlying mechanisms differ in many ways. One of the major differences stems from the lack of active dislocation motion that, in metals, serves to arrest cracks by reducing stress concentrations at flaw tips. As a result, even relatively small flaws (20 to 50 μm in radius) can cause glasses and ceramics to fail. This chapter examines the propensity of flaws to grow in glass and ceramic materials exposed to different environments, especially water, at stresses well below those that would produce immediate failure. It describes crack growth mechanisms, explains how to measure crack growth rates and predict time to failure, and provides crack growth data for a number of materials and environments.
1