Skip Nav Destination
Close Modal
Search Results for
crack initiation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 964 Search Results for
crack initiation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540379
EISBN: 978-1-62708-309-6
... Abstract This appendix presents an analytical model that estimates damage rates for both crack initiation and propagation mechanisms. The model provides a nonarbitrary definition of fatigue crack initiation length, which serves as an analytical link between initiation and propagation analyses...
Abstract
This appendix presents an analytical model that estimates damage rates for both crack initiation and propagation mechanisms. The model provides a nonarbitrary definition of fatigue crack initiation length, which serves as an analytical link between initiation and propagation analyses and appears to have considerable merit in estimating the total fatigue life of notched and cracked structures.
Image
Published: 01 March 2006
Image
in Stress-Corrosion Cracking of High-Strength Steels (Yield Strengths Greater Than 1240 MPa)[1]
> Stress-Corrosion Cracking<subtitle>Materials Performance and Evaluation</subtitle>
Published: 01 January 2017
Fig. 3.6 Schematic of possible crack initiation sites. (a) and (c), Internal environments. (b) and (d), External environments. Source: Ref 3.18
More
Image
Published: 01 December 2003
Fig. 12 Fatigue-crack initiation in polystyrene from a V-notch. Note crazes surrounding and preceding the crack. 37×
More
Image
Published: 01 December 2015
Fig. 17 Section showing fretting damage and fatigue crack initiation in 0.2% C steel. Courtesy of R.B. Waterhouse, University of Nottingham
More
Image
in Sources of Failures in Carburized and Carbonitrided Components
> Failure Analysis of Heat Treated Steel Components
Published: 01 September 2008
Fig. 70 Model of fatigue crack initiation due to the presence of inclusions in a nonmartensitic (decarburized) steel layer. Source: Ref 122
More
Image
Published: 01 September 2008
Fig. 9 Location of fatigue crack initiation on nitrided 40HM (4140)-grade steel. Original magnification: 100×
More
Image
Published: 01 January 2015
Fig. 21.19 Fatigue crack initiation in carburized coarse-grained 8620 steel (a) quenched directly from carburizing at 927 °C (1700 °F) and (b) reheated after carburizing to 788 °C (1450 °F). Both specimens tempered at 145 °C (300 °F). Scanning electron micrographs. Source: Ref 21.31
More
Image
Published: 01 December 2018
Fig. 6.103 SEM macrograph at ID edge showing multiple crack initiation points (white arrows) and auxiliary cracking on crack fracture surface (black arrows). The overall fracture surface was relatively brittle and covered with corrosion products/scales, 50×.
More
Image
in Stress-Corrosion Cracking of Titanium Alloys[1]
> Stress-Corrosion Cracking<subtitle>Materials Performance and Evaluation</subtitle>
Published: 01 January 2017
Fig. 10.12 Effect of potential on crack initiation stress for α/β titanium alloys in various halide solutions at 25 °C (77 °F). Source: Ref 10.27
More
Image
Published: 01 November 2012
Fig. 28 Development of extrusions and intrusions during fatigue crack initiation. Source: Ref 8
More
Image
in Common Causes of Failures
> Failure Analysis of Engineering Structures: Methodology and Case Histories
Published: 01 October 2005
Fig. 2.20 Sketch illustrating piston head misalignment, fatigue crack initiation, and propagation. A, region of misalignment; B, sharp corner of piston ring groove; B-C, fatigue crack; and C-D, sudden overload failure
More
Image
in Failure of Dowel Bolts in an Aircraft Engine
> Failure Analysis of Engineering Structures: Methodology and Case Histories
Published: 01 October 2005
Fig. CH17.4 SEM fractograph showing crack initiation at the outer periphery and propagation inward
More
Image
in Nonarbitrary Crack Size Concept for Fatigue Crack Initiation
> Mechanics and Mechanisms of Fracture: An Introduction
Published: 01 August 2005
Image
in Nonarbitrary Crack Size Concept for Fatigue Crack Initiation
> Mechanics and Mechanisms of Fracture: An Introduction
Published: 01 August 2005
Image
Published: 01 August 2005
Fig. A4.3 Comparison of fatigue crack initiation test data and LOOPIN 8 prediction using the uncut spectra. Source: Ref A4.6
More
Image
Published: 01 August 2005
Fig. A4.4 Comparison of fatigue crack initiation test data and LOOPIN 8 prediction using the post -RACETRAK spectra (DMIN = 0.25). Source: Ref A4.6
More
Image
Published: 01 August 2005
Fig. A4.5 Comparison of fatigue crack initiation test data and LOOPIN 8 prediction using the post -RACETRAK spectra (DMIN = 0.50). Source: Ref A4.6
More
Image
in Special Materials: Polymers, Bone, Ceramics, and Composites
> Fatigue and Durability of Structural Materials
Published: 01 March 2006
Fig. 12.49 Reversed bending cyclic crack initiation behavior for (a) HS-110 and (b) HS-130 hot-pressed silicon nitride at 30 Hz for various temperatures. Source: Ref 12. 16
More
Image
Published: 01 December 1999
Fig. 3.17 Variation of fatigue-crack initiation lives with residual stress at the notch of tested steels. Surface carbon: 0.95 to 1.05%. Hardness 750 to 780 HV. Crack initiation, 5 μm crack at the notch. Source: Ref 25 Steel Carbides Retained austenite Vol% Diameter, μm Spacing
More
1