1-20 of 935 Search Results for

corrosion resistance

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000059
EISBN: 978-1-62708-312-6
... Abstract This chapter discusses the sintering process for stainless steel powders and its influence on corrosion resistance. It begins with a review of sintering furnaces and atmospheres and the effect of temperature and density on compact properties such as conductivity, ductility...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120123
EISBN: 978-1-62708-269-3
... Abstract Titanium and its alloys are used chiefly for their high strength-to-weight ratio, but they also have excellent corrosion resistance, better even than stainless steels. Titanium, as the chapter explains, is protected by a tenacious oxide film that forms rapidly on exposed surfaces...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030167
EISBN: 978-1-62708-282-2
... Abstract This chapter discusses the factors influencing the corrosion resistance of bulk materials, namely alloying, metallurgical factors, and mechanical treatments. corrosion resistance bulk materials alloying metallurgical factors mechanical treatments THE CORROSION RESISTANCE...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030169
EISBN: 978-1-62708-282-2
... Abstract This chapter addresses the general effects of composition, mechanical treatment, surface treatment, processing, and fabrication operations on the corrosion resistance of aluminum and its alloys. Different types of surface treatments covered include claddings, anodizing, and conversion...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030172
EISBN: 978-1-62708-282-2
... Abstract This chapter discusses the effects of metallurgical factors on the corrosion resistance of magnesium alloys. The factors are chemical composition, heat treating, grain size, and cold-work effects. The chapter describes the causes of corrosion failures in magnesium alloys, namely heavy...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030176
EISBN: 978-1-62708-282-2
... Abstract Stainless steels and nickel-base alloys are recognized for their resistance to general corrosion and other categories of corrosion. This chapter examines the effects of specific alloying elements, metallurgical structure, and mechanical conditioning on the corrosion resistance...
Image
Published: 01 June 2007
Fig. 6.3 Effect of pitting resistance equivalent on corrosion resistance (5% NaCl by immersion) of standard (▭)and tin- and copper- ( o ) modified austenitic stainless steels (unpublished data) More
Image
Published: 01 January 2017
Fig. 3.43 Stress-corrosion resistance and fracture toughness of AISI 4130 and 4140 steels. Source: Ref 3.6 More
Image
Published: 01 January 2017
Fig. 12.1 Effect of composition on physical metallurgy, general corrosion resistance, and environmentally assisted cracking trends in quenched uranium alloys. Source: Ref 12.11 More
Image
Published: 01 March 2002
Fig. 13.14 Effect of a nickel-aluminide-type coating on the hot corrosion resistance of an IN-713 nickel-base superalloy turbine blade compared with an uncoated blade. (a) Uncoated blade after 118 test cycles, (b) micrograph showing severe degradation of IN-713 by hot corrosion, (c) aluminide More
Image
Published: 01 June 2016
Fig. 8.10 Enhanced corrosion resistance of cold-sprayed magnesium alloy AZ31 using aluminum compared to AZ91D and AM60B alloys in 3.5% NaCl. Source: Ref 8.44 More
Image
Published: 01 January 2000
Fig. 10 Variation in stainless steel corrosion resistance in model SO 2 scrubber environments. (a) Type 304 in acid condensate. (b) Type 316 in acid condensate. (c) Type 304 in limestone slurry zone More
Image
Published: 01 September 2008
Fig. 73 Effect of tempering temperature on corrosion resistance of carburized stainless steel 1Kh16N2AM. The corrosion test was conducted in a humidity cabinet. Source: Ref 133 More
Image
Published: 01 November 2007
Fig. 6.14 Effect of nickel on the corrosion resistance of alloys in Ar-30Cl 2 at 704 °C (1300 °F) for 24 h. Source: Ref 26 More
Image
Published: 01 November 2007
Fig. 8.18 Effect of chromium in Fe-Cr alloys on the erosion-corrosion resistance of the alloys at 850 °C (1560 °F) in air with 35 m/s (115 ft/s) particle velocity (130 μm alumina particles). Source: Ref 31 More
Image
Published: 01 November 2007
Fig. 9.1 Relative hot corrosion resistance of cobalt-base alloys obtained from burner rig tests using 3% S residual oil and 325 ppm NaCl in fuel (equivalent to 5 ppm NaCl in air) at 870 °C (1600 °F) for 600 h. Source: Beltran ( Ref 21 ) More
Image
Published: 01 November 2007
Fig. 9.2 Relative hot corrosion resistance of nickel- and cobalt-base alloys obtained from burner rig tests at 870, 950, and 1040 °C (1600, 1750, and 1900 °F) for 100 h, using 1% S diesel fuel, 30:1 air-to-fuel ratio, and 200 ppm sea-salt injection. Source: Bergman et al. ( Ref 22 ) More
Image
Published: 01 November 2007
Fig. 9.3 Relative hot corrosion resistance of experimental alloys obtained from burner rig tests at 950 and 1040 °C (1750 and 1900 °F) for 100 h, using 1% S diesel fuel, 30:1 air-to-fuel ratio, and 200 ppm sea-salt injection. Source: Bergman et al. ( Ref 22 ) More
Image
Published: 01 November 2007
Fig. 9.4 Relative hot corrosion resistance of experimental alloys obtained from burner rig tests at 910, 950, and 1040 °C (1675, 1750, and 1900 °F) for 100 h, using 1% S diesel fuel, 30:1 air-to-fuel ratio, and 200 ppm sea salt injection. Source: Bergman et al. ( Ref 22 ) More
Image
Published: 01 October 2012
Fig. 3.7 Effect of purity on corrosion resistance of AZ91 alloy. Source: Ref 3.4 More