Skip Nav Destination
Close Modal
Search Results for
copper-beryllium alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 176 Search Results for
copper-beryllium alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 March 2006
Fig. 6 Precipitation-hardening curves of beryllium-copper binary alloys. As the percentage of beryllium increases, the aging time required to reach maximum hardness is shortened, and the maximum hardness is increased. These alloys were quenched form 800 °C (1470 °F) and aged at 350 °C (660 °F
More
Image
Published: 01 October 2011
Fig. 14.7 Phase diagrams for beryllium-copper alloys. (a) Binary composition for high-strength alloys such as C17200. (b) Pseudobinary composition for C17510, a high-conductivity alloy containing Cu-1.8Ni-0.4Be
More
Image
Published: 01 June 2008
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440231
EISBN: 978-1-62708-262-4
... for hardening or strengthening, namely solution treating and aging. Examples are presented for heat treating of two commercially important nonferrous alloys, one from the aluminum-copper system and one from the copper-beryllium system. aging annealing cold working nonferrous alloys solution treatment...
Abstract
This chapter presents an overview of heat treating of nonferrous alloys. First, a brief discussion on the effects of cold work and annealing on nonferrous alloys is presented. This is followed by a discussion on the mechanisms involved in the more commonly used heat treating procedures for hardening or strengthening, namely solution treating and aging. Examples are presented for heat treating of two commercially important nonferrous alloys, one from the aluminum-copper system and one from the copper-beryllium system.
Image
Published: 01 April 2013
Fig. 12 Scanning Auger identification of elements, including some of low atomic number, present in several phases in a copper-beryllium alloy. (a) Secondary electron image showing inclusions. (b-e) Auger spectra obtained from the indicated microstructural features. (b) The long rod shaped
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230001
EISBN: 978-1-62708-298-3
... Abstract Beryllium, despite its relatively simple atomic structure, possesses a wide range of useful engineering properties. It has the highest strength-to-weight ratio and modulus of elasticity among structural metals and is an important alloy addition in copper, nickel, and aluminum alloys...
Abstract
Beryllium, despite its relatively simple atomic structure, possesses a wide range of useful engineering properties. It has the highest strength-to-weight ratio and modulus of elasticity among structural metals and is an important alloy addition in copper, nickel, and aluminum alloys. It also has excellent thermal properties, low atomic mass, a small x-ray absorption cross section, and a large neutron scattering cross section. This brief introductory chapter provides an overview of the unique qualities of beryllium along with typical applications and uses.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230007
EISBN: 978-1-62708-298-3
... emerged from the developmental programs with the discovery of the exceptional mechanical properties of metals alloyed with beryllium. The ability of beryllium, with the addition of small amounts of nickel, to age harden copper was discovered by Corson in 1926. Michael G. Corson was a metallurgist...
Abstract
This chapter describes some of events and developments that helped drive the commercialization of beryllium and its acceptance as an engineering material. It traces the growth of the domestic beryllium industry from its origins in the 1920s to the present time, and provides a status update on the primary beryllium producers throughout the world.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230163
EISBN: 978-1-62708-298-3
... Abstract This chapter discusses the composition, properties, and uses of the most common beryllium alloys and composites. It provides information on beryllium-aluminum, beryllium-copper, and beryllium-titanium as well as beryllium-antimony and beryllium-iron systems. alloying elements...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270074
EISBN: 978-1-62708-301-0
... to the failure of the fuel pump. Visual Examination of General Physical Features Parts of the damaged fuel pump are shown in Fig. CH5.1 and CH5.2 . All seven slipper pads in the rotor assembly of the pump had been damaged, some of them severely. These pads were made of copper-beryllium alloy...
Abstract
This chapter discusses the key findings of an investigation into the failure of an aircraft engine fuel pump. It explains how investigators came to the conclusion that metal slivers from a heavily worn spring may have interrupted the flow of lubricant to one of the slipper pads, causing adhesive wear and the welding of slipper pad material onto the surface of a mating cam plate. Excessive friction between the slipper pads and cam plate, in turn, created a torsional overload that caused the camshaft to break. The chapter presents SEM images showing the wear pattern on one of the springs along with photographs of the damaged slipper pads and cam plate. It also includes an image of a copper flake found in one of the pistons and discusses the results of qualitative x-ray chemical analysis.
Image
Published: 01 December 1984
Figure 3-34 Microstructure of beryllium-copper alloy revealed by swabbing with aqueous 3% ammonium persulfate and 1% ammonium hydroxide. Left, solution-annealed, twins not attacked [70 HRB (Rockwell hardness on the B scale), 300×]; right, solution-annealed and aged [41 HRC (Rockwell hardness
More
Image
Published: 01 June 2008
Fig. 25.17 Microstructure of beryllium-copper alloy. Original magnification: 300×. Source: Ref 4
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230145
EISBN: 978-1-62708-298-3
... by the same group reported on the investigation of the influence of beryllium on the thermal stability of the Zr-Al-Ni-Cu bulk amorphous alloys [ Xiao et al. 2004 ]. With the aluminum, nickel, and copper held at constant atomic percentages of 10, 10, and 15, respectively, the zirconium composition was (65- X...
Abstract
Beryllium is an important additive in the production of amorphous metal alloys, achieving low density and high strength. It also plays a role in amorphous alloys that can be slowly cooled and still retain their amorphous structure. This chapter provides information on the development of amorphous alloys that contain beryllium and the applications for which they are suited.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230493
EISBN: 978-1-62708-298-3
... ranges. beryllium copper waste recycling 27.1 Introduction Salient beryllium statistics are based mostly on the beryllium content of beryllium-copper alloys and beryllium metal ( Table 27.1 ). In 2000, approximately 130 metric tons of beryllium contained in postconsumer old scrap...
Abstract
This chapter describes a process for recovering beryllium from industrial waste associated with beryllium-copper production. It presents several detailed flowsheets along with typical operating parameters such as flow rates, chemical concentrations, particle sizes, and compositional ranges.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230179
EISBN: 978-1-62708-298-3
... peritectically at 930 °C (1705 °F) and has a CsCl ordered cubic structure. The beta phase is a disordered solid solution stable above 620 °C (1150 °F). The solid solubility of beryllium in copper is sufficient to yield useful age-hardenable alloys with good electrical, strength, and wear properties. Fig...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230151
EISBN: 978-1-62708-298-3
... alloying additions can also increase the temperature range over which bcc beryllium is stable (i.e., cobalt, nickel, and copper). The solidification of pure beryllium does not reveal evidence of this phase transformation, probably because liquid beryllium can undercool below the transformation temperature...
Abstract
This chapter provides an overview of the physical metallurgy of beryllium, discussing phases and phase transformations, physical and mechanical properties, heat treatment, and alloying. It explains how the atomic structure of beryllium, particularly its sp hybrid state, contributes to the anisotropy of elastic constants and slip properties, resulting in a specific stiffness, or modulus-to-density ratio, six times higher than that of any other structural material.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300163
EISBN: 978-1-62708-323-2
... + Be Beryllium coppers only contain a fraction of a percent to about 3% Be, but the beryllium addition allows these alloys to age harden to as high as 44 HRC. Age hardened, they are the highest strength of all copper alloys, and they are commonly used for springs. Cu + Ni + Zn This family of alloys have...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240597
EISBN: 978-1-62708-251-8
... Abstract This chapter discusses the compositions, properties, and applications of nonferrous metals, including zirconium, hafnium, beryllium, lead, tin, gold, silver, and platinum group metals. It also addresses fusible alloys and provides melting temperatures for several compositions...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240469
EISBN: 978-1-62708-251-8
... resistance. This chapter covers the classification, composition, properties, and applications of copper alloys, including brasses, bronzes, copper-nickel, beryllium-copper, and casting alloys. It also examines wrought copper alloys and pure coppers. The chapter begins with an overview of the copper...
Abstract
Copper is often used in the unalloyed form because pure copper is more conductive than copper alloys. Alloying elements are added to optimize strength, ductility, and thermal stability, with little negative effect on other properties such as conductivity, fabricability, and corrosion resistance. This chapter covers the classification, composition, properties, and applications of copper alloys, including brasses, bronzes, copper-nickel, beryllium-copper, and casting alloys. It also examines wrought copper alloys and pure coppers. The chapter begins with an overview of the copper production process and concludes with a discussion on corrosion resistance.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230055
EISBN: 978-1-62708-298-3
... leaving the subject of carbon reduction of the oxide, the process whereby beryllium-copper alloys are commercially prepared should be discussed. The essence of the process (which is described in Chapter 14, “Alloying of Beryllium,” in this book) is the smelting of BeO, carbon, and copper in an electric...
Abstract
This chapter provides a fundamental understanding of beryllium reduction thermodynamics as a prerequisite for subsequent chapters on extraction, chemical processing, and corrosion. It examines a number of reduction methods along with a potential refining process, highlighting the challenges encountered with each.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230401
EISBN: 978-1-62708-298-3
..., and testing. beryllium alloys beryllium bonding brazing soldering welding BERYLLIUM has been successfully joined by fusion welding, brazing, solid-state bonding (diffusion bonding and deformation bonding), and soldering. These different processes are described, and the advantages...
Abstract
Beryllium has been successfully joined by fusion welding, brazing, solid-state bonding, and soldering. This chapter describes these processes in detail along with their advantages and disadvantages. It also addresses application considerations such as surface preparation, joint design, and testing.
1