Skip Nav Destination
Close Modal
Search Results for
copper-base alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 704 Search Results for
copper-base alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090221
EISBN: 978-1-62708-266-2
... Abstract This chapter describes the conditions under which copper-base alloys are susceptible to stress-corrosion cracking (SCC) and some of the environmental factors, such as temperature, pH, and corrosion potential, that influence crack growth and time to failure. It explains that, although...
Abstract
This chapter describes the conditions under which copper-base alloys are susceptible to stress-corrosion cracking (SCC) and some of the environmental factors, such as temperature, pH, and corrosion potential, that influence crack growth and time to failure. It explains that, although most of the literature has been concerned with copper zinc alloys in ammoniacal solutions, there are a number of alloy-environment combinations where SCC has been observed. The chapter discusses several of these cases and the effect of various application parameters, including composition, microstructure, heat treatment, cold working, and stress intensity. It also provides information on stress-corrosion testing, mitigation techniques, and basic cracking mechanisms.
Image
Published: 01 November 2013
Fig. 25 Alligatoring in a rolled slab. This defect is thought to be caused by nonhomogeneous deformation and nonuniform recrystallization during primary rolling of such metals as zinc alloys, aluminum-magnesium alloys, and copper-base alloys. Courtesy of J. Schey, University of Waterloo
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250039
EISBN: 978-1-62708-345-4
..., namely cast carbon and alloy steels, gray and ductile cast irons, powder metallurgy irons and steels, stainless steels, and tool steels. In terms of nonferrous alloys, the chapter addresses copper-base alloys, die cast aluminum alloys, zinc alloys, and magnesium alloys. References References 1...
Abstract
This chapter describes important requirements for ferrous and nonferrous alloys used for gears. Wrought surface-hardening and through-hardening carbon and alloy steels are the most widely used of all gear materials and are emphasized in this chapter. The processing characteristics of gear steels and the bending fatigue strength and properties of carburized steels are reviewed. In addition to wrought steels, the chapter provides information on the other iron-base alloys that are used for gears, namely cast carbon and alloy steels, gray and ductile cast irons, powder metallurgy irons and steels, stainless steels, and tool steels. In terms of nonferrous alloys, the chapter addresses copper-base alloys, die cast aluminum alloys, zinc alloys, and magnesium alloys.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090419
EISBN: 978-1-62708-266-2
... low-alloy steels, hardenable stainless steels, austenitic stainless steels, copper-base alloys, titanium and titanium alloys, aluminum and aluminum alloys, and nickel and nickel alloys. It identifies material-environment combinations where SCC is known to occur, provides guidelines on how...
Abstract
This chapter describes nondestructive evaluation (NDE) test methods and their relative effectiveness for diagnosing the cause of stress-corrosion cracking (SCC) service failures. It discusses procedures for analyzing various types of damage in carbon and low-alloy steels, high-strength low-alloy steels, hardenable stainless steels, austenitic stainless steels, copper-base alloys, titanium and titanium alloys, aluminum and aluminum alloys, and nickel and nickel alloys. It identifies material-environment combinations where SCC is known to occur, provides guidelines on how to characterize cracking and fracture damage, and explains what to look for during macroscopic and microscopic examinations as well as chemical and metallographic analyses. It also includes nearly a dozen case studies investigating SCC failures in various materials.
Image
in Stress-Corrosion Cracking of Copper Alloys[1]
> Stress-Corrosion Cracking: Materials Performance and Evaluation
Published: 01 January 2017
Fig. 7.14 Effect of (a) aluminum content or (b) nickel content on time to failure of copper-base alloys tested in tarnishing and nontarnishing ~15 N aqueous ammonia containing 8 g/L Cu. Source: Ref 7.45
More
Image
Published: 01 December 2001
Fig. 6 Effect of aluminum content (a) or nickel content (b) on time to failure of copper-base alloys tested in tarnishing and nontarnishing ~15 N aqueous ammonia containing 8 g/L Cu. Source: Ref 2
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060315
EISBN: 978-1-62708-261-7
... types of commercial alloys are outlined in Chapter 5, “Modern Alloy Production,” in this book. Heat treatment of aluminum, cobalt, copper, magnesium, nickel-base superalloys, and titanium alloys is discussed in Chapter 14, “Nonferrous Heat Treatment.” 13.1 Light Metals (Al, Be, Mg, Ti) High...
Abstract
Nonferrous metals are of commercial interest both as engineering materials and as alloying agents. This chapter addresses both roles, discussing the properties, processing characteristics, and applications of several categories of nonferrous metals, including light metals, corrosion-resistance alloys, superalloys, refractory metals, low-melting-point metals, reactive metals, precious metals, rare earth metals, and metalloids or semimetals. It also provides a brief summary on special-purpose materials, including uranium, vanadium, magnetic alloys, and thermocouple materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170457
EISBN: 978-1-62708-297-6
... be precipitation hardened to the highest strength levels attainable in copper-base alloys. There are two commercially significant alloy families employing two ranges of beryllium with additions of cobalt or nickel. The so-called red alloys contain beryllium at levels ranging from approximately 0.2 to 0.7 wt...
Abstract
This article discusses the composition, properties, and behaviors of copper and its alloys. It begins with an overview of the characteristics, applications, and commercial grades of wrought and cast copper. It then discusses the role of alloying, explaining how zinc, tin, aluminum, silicon, and nickel affect the physical and mechanical properties of coppers and high-copper alloys as well as brasses, bronzes, copper-nickels, and nickel silvers. It also explains how alloying affects electrical conductivity, corrosion resistance, stress-corrosion cracking, and processing characteristics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440231
EISBN: 978-1-62708-262-4
... metals, although there are some iron-base alloys that are hardened by the precipitation mechanisms (see Chapter 10, “Heat Treating of Stainless Steels” ). Compositions and typical uses of some commonly used alloys of aluminum, copper, magnesium, and nickel that respond readily to precipitation hardening...
Abstract
This chapter presents an overview of heat treating of nonferrous alloys. First, a brief discussion on the effects of cold work and annealing on nonferrous alloys is presented. This is followed by a discussion on the mechanisms involved in the more commonly used heat treating procedures for hardening or strengthening, namely solution treating and aging. Examples are presented for heat treating of two commercially important nonferrous alloys, one from the aluminum-copper system and one from the copper-beryllium system.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910237
EISBN: 978-1-62708-250-1
... where the conditions are controlled. It is thus obvious that stainless steels, copper-base alloys, and other highly corrosion-resistant alloys are not always required for many such applications. Corrosive Environments There are a number of major corrosive conditions into which carbon steels can...
Abstract
All materials are susceptible to corrosion or some form of environmental degradation. Although no single material is suitable for all applications, usually there are a variety of materials that will perform satisfactorily in a given environment. The intent of this chapter is to review the corrosion behavior of the major classes of metals and alloys as well as some nonmetallic materials, describe typical corrosion applications, and present some unique weaknesses of various types of materials. It also aims to point out some unique material characteristics that may be important in material selection, and discuss, where appropriate, the characteristic forms of corrosion that attack specific materials. The materials addressed in this chapter include carbon steels, weathering steels, and alloy steels; nickel, copper, aluminum, titanium, lead, magnesium, tin, zirconium, tantalum, niobium, and cobalt and their alloys; polymers; and other nonmetallic materials, including rubber, carbon and graphite, and woods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300163
EISBN: 978-1-62708-323-2
... keeping copper from being the worldwide roofing material of choice is the cost—copper roofs can be ten times the cost of asphalt roofs. Cavitation Erosion A significant application for copper-based alloys is for propellers for marine propulsion. Copper alloys are resistant to corrosion in saltwater...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170528
EISBN: 978-1-62708-297-6
... of substrates. In addition to coatings, tin is used in chemicals, solders, bearing alloys, and pewter. Large amounts of tin are used in copper-base alloys (copper-tin bronzes). Tin is a potent solid-solution strengthener in copper and also increases corrosion resistance. In addition, tin is used as an alloying...
Abstract
This article examines the role of alloying in the production and use of lead and tin. It describes the various categories and grades of lead and lead-base alloys along with their nominal compositions and corresponding UNS numbers. It also discusses the composition and properties of lead used in battery grids, type metals, and bearings. It, likewise, discusses the use of tin in various types of solder and in bearings and provides composition and property data for application-specific designations and grades. The article also discusses the effect of impurities in tin-lead solders and the amounts and combinations in which they are found.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240469
EISBN: 978-1-62708-251-8
... designations for wrought copper and copper alloys are based primarily on the amount of cold work in the finished product. A partial listing of the rather extensive temper designations for copper and its alloys is shown in Table 25. 4 . Properties of select copper alloys Table 25.3 Properties of select...
Abstract
Copper is often used in the unalloyed form because pure copper is more conductive than copper alloys. Alloying elements are added to optimize strength, ductility, and thermal stability, with little negative effect on other properties such as conductivity, fabricability, and corrosion resistance. This chapter covers the classification, composition, properties, and applications of copper alloys, including brasses, bronzes, copper-nickel, beryllium-copper, and casting alloys. It also examines wrought copper alloys and pure coppers. The chapter begins with an overview of the copper production process and concludes with a discussion on corrosion resistance.
Book Chapter
Book: Principles of Brazing
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230047
EISBN: 978-1-62708-351-5
... 770–925 Microcrystalline Copper alloys and mild steel Co-19Cr-19Ni-8Si-1B 1120–1150 Amorphous Cobalt-base alloys and superalloys Ni-10P 880 Amorphous Steels, stainless steels, and superalloys Ni-32Pd-8Cr-3B-1Fe 940–990 Amorphous Steels, stainless steels, and superalloys Ni-14Cr...
Abstract
This chapter presents an overview of families of brazing alloys that one is likely to encounter in a manufacturing environment. It discusses the metallurgical aspects of brazing and includes a survey of brazing alloy systems. A discussion of deleterious and beneficial impurities is provided with examples. The chapter also describes the application of phase diagrams to brazing.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820169
EISBN: 978-1-62708-339-3
... of significantly different thermal conductivities are welded together (for example, plain carbon steels and copper-base alloys), the welding procedure must provide for this difference. Often the welding heat source must be directed at the metal having the higher thermal conductivity to obtain the proper heat...
Abstract
Many factors must be considered when welding dissimilar metals, and adequate procedures for the various metals and sizes of interest for a specific application must be developed and qualified. Most combinations of dissimilar metals can be joined by solid-state welding (diffusion welding, explosion welding, friction welding, or ultrasonic welding), brazing, or soldering where alloying between the metals is normally insignificant. This chapter describes the factors influencing joint integrity and discusses the corrosion behavior of dissimilar metal weldments.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060333
EISBN: 978-1-62708-261-7
... from the fine dispersion of second-phase precipitates that form in a metastable (quenched) single-phase alloy—as in Dr. Wilm’s mystery with aluminum-copper alloys Two-phase nonferrous alloys (such as titanium-base alloys and high-zinc copper-zinc alloys), where strength can be obtained...
Abstract
Nonferrous alloys are heat treated for a variety of reasons. Heat treating can reduce internal stresses, redistribute alloying elements, promote grain formation and growth, produce new phases, and alter surface chemistry. This chapter describes heat treatment processes and how nonferrous alloys respond to them. It provides information on aluminum, cobalt, copper, magnesium, nickel, and titanium alloys and their composition, microstructure, properties, and processing characteristics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170596
EISBN: 978-1-62708-297-6
... Abstract This article explains how alloying elements affect the properties and behaviors of electrical contacts. It describes the composition, strength, hardness, and conductivity of a wide range of contact alloys and composites based on silver, copper, gold, platinum, palladium, tungsten...
Abstract
This article explains how alloying elements affect the properties and behaviors of electrical contacts. It describes the composition, strength, hardness, and conductivity of a wide range of contact alloys and composites based on silver, copper, gold, platinum, palladium, tungsten, and molybdenum, and related oxides and carbides.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430087
EISBN: 978-1-62708-253-2
... of SH and RH sections of boilers with conventional steam parameters only. There are two ways to increase the creep strength of an 18/8 base alloy. The first is to choose understabilization; the second is to make additions of alloying elements such as niobium and copper. Precipitation strengthening...
Abstract
Boilers are often classified based on the maximum operating temperature and pressure for which they are designed. Classifications, in ascending order, are subcritical, supercritical, ultra-supercritical, and to advanced ultra-supercritical. At each higher operating point comes greater efficiency, as well as greater demand on construction materials. This chapter discusses the primary requirements for boiler tube materials, including oxidation and corrosion resistance, fatigue strength, thermal conductivity, and the ability to resist creep and rupture. It also provides information on various steels and alloys, covering cost, engineering specifications, and ease of use.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060085
EISBN: 978-1-62708-261-7
.... Thus, the combustion products cannot contaminate the metal charge, as commonly occurs in the reverberatory furnace described earlier. Most crucibles are used to melt, hold, and/or transfer nonferrous metals. This includes aluminum alloys as well as zinc alloys and copper and copper-base alloys...
Abstract
This chapter describes the processes involved in alloy production, including melting, casting, solidification, and fabrication. It discusses the effects of alloying on solidification, the formation of solidification structures, supercooling, nucleation, and grain growth. It describes the design and operation of melting furnaces as well as melting practices and the role of fluxing. It also discusses casting methods, nonferrous casting alloys, and atomization processes used to make metal powders.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290165
EISBN: 978-1-62708-306-5
..., nickel, cobalt, or copper as a base, to which silicon/boron (in the case of aluminum- and nickel-base alloys) and phosphorus (in the case of copper- and nickel-base alloys) are added. The presence of one or more of these elements in the alloys tends to impart lower melting temperatures and surface...
Abstract
Brazing and soldering processes use a molten filler metal to wet the mating surfaces of a joint, with or without the aid of a fluxing agent, leading to the formation of a metallurgical bond between the filler and the respective components. This chapter discusses the characteristics, advantages, and disadvantages of brazing and soldering. The first part focuses on the fundamentals of the brazing process and provides information on filler metals and specific brazing methods. The soldering portion of the chapters provides information on solder alloys used, selection criteria for base metal, the processes involved in precleaning and surface preparation, types of fluxes used, solder joint design, and solder heating methods.
1