Skip Nav Destination
Close Modal
Search Results for
continuous-belt machines
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 95 Search Results for
continuous-belt machines
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130539
EISBN: 978-1-62708-284-6
... strip and a bright stainless steel strip side by side on the belt and send them through the furnace. Use the following chart to determine the source of oxidation and the color chart to determine its location: Time-Temperature Effect A study at the Illinois Institute of Technology obtained...
Abstract
Steel heated in contact with air at temperatures in the tempering range takes on various temper colors due to the formation of a thin oxide film. This appendix provides information on the cause and source of oxidation of steel and time-temperature effect on SAE 1035 steel. In addition, figures that show temper colors after heating 1035 steel in circulating air are presented.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200197
EISBN: 978-1-62708-354-6
... to a few hundred pounds each, are frequently blasted in equipment whose inside chamber is composed of a belt of metal slats in the form of a continuous loop. The castings are cradled in the trough formed by the slats and continuously tumbled by the movement of the continuous slat belt. Throughout...
Abstract
After pouring, castings are allowed to solidify and cool. They are later removed from the molds in the shakeout operation. A series of activities then follow, which are generally referred to as finishing and heat treatment. These activities can be broadly categorized as shakeout, abrasive blast cleaning, removal of risers, ingates, and discontinuities, rough inspection, removal of discontinuities, finishing welding, heat treatment, and final visual, dimensional, and NDT inspection. This chapter provides a detailed discussion on these activities.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120085
EISBN: 978-1-62708-269-3
... because of the possibility that chloride residues remain as an integral part of the surface. Both types of lubricants improve grinding efficiency when the belts are coated with aluminum oxide or silicon carbide. Flooding the work with lubricant is recommended; however, machines built for flooding...
Abstract
Cleaning procedures serve to remove scale, tarnish films, and other contaminants that form or are otherwise deposited on the surface of titanium during processing operations such as hot working and heat treatment. This chapter explains what makes titanium susceptible to the formation of scale and how it can be removed via belt grinding, abrasive blasting, and molten salt descaling baths. It also discusses the role of acid pickling, barrel finishing, polishing, and buffing as well as the use of chemical conversion coatings and protective platings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.t51180061
EISBN: 978-1-62708-256-3
... problem-solving process as it applies to failure investigation, how to assemble an investigation team, and the details of organization and planning. It concludes with a case history of the Firestone 500 steel-belted tire failure, stressing the importance of a systematic approach to failure investigations...
Abstract
Statistics, data analysis, root cause analysis, and problem-solving processes play a key role in failure investigations. This chapter explains how to collect failure investigation data, how to build and maintain a database for company-related failures, and how to use corresponding statistics including type of failure, material, and root cause. It describes the purpose and benefits of conducting a root cause analysis and the factors, namely relative failure importance and company value, that determine when an investigation should be performed. The chapter also discusses the four-step problem-solving process as it applies to failure investigation, how to assemble an investigation team, and the details of organization and planning. It concludes with a case history of the Firestone 500 steel-belted tire failure, stressing the importance of a systematic approach to failure investigations.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860007
EISBN: 978-1-62708-338-6
... resin The winder system also uses a manipulating arm that secures five mandrels at one time—in this case, the five plastic liners that will be used as the mandrels. The manipulating arm picks up five of the liners from an automated delivery belt and mounts them into the five-spindle winder...
Abstract
This chapter reviews the development of filament winding systems and the automated processes used in state-of-the-art filament winding facilities. It first provides a description on the early stages of modern filament winding, followed by brief information on the advances of filament winding in the computer age. Then, the chapter discusses the requirements for filament winding in manufacturing oil and gas industry components and in high-volume production of sporting goods, propane tanks, and curing ovens. The chapter concludes with examples of the versatility of filament winding in producing complex parts.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060197
EISBN: 978-1-62708-261-7
.... This graphitization from the decomposition of cementite can embrittle steel parts, especially when the graphite particles form along a continuous zone through a load-carrying member. Graphitization and the formation of spheroidal carbides are competing mechanisms of pearlite decomposition. The rate...
Abstract
This chapter discusses the types, methods, and advantages of heat treating procedures, including annealing, normalizing, tempering, and case hardening. It describes the iron-carbon system, the formation of equilibrium and metastable phases, and the effect of alloy elements on hardenability and tempering response. It discusses the significance of critical temperatures, the use of transformation diagrams, and types of annealing treatments. It also provides information on heat treating furnaces, the effect of heating rate on transformation temperatures, quench and temper procedures, and the use of cold treating.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440055
EISBN: 978-1-62708-262-4
... is cooled inside the furnace. Belt-Type Continuous Furnaces In this construction, a continuous conveyor belt acts as a moving hearth to carry the work through the furnace. Several belt designs are used, depending on the size and weight of the work to be handled, how the hot belt is supported inside...
Abstract
This chapter, a detailed account of furnaces and related equipment for heat treating, begins by describing three basic modes of heat transmission, namely conduction, convection, and radiation, followed by a discussion on the working principle, applications, advantages, and disadvantages of furnaces classified based on the heat transfer medium employed. The types of furnaces covered are batch-type, continuous-type, liquid bath, fluidized bed, and vacuum. The subsequent sections provide information on furnace parts, fixtures, quenching mediums, and quenching systems. The final section of the chapter describes the types of atmospheres available, emphasizing their applications and limitations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220253
EISBN: 978-1-62708-341-6
... for this device–a Z feeder. Conveyor-type bar-end heaters ( Fig. 10.8b ) make use of a channel induction coil. Magazine-loaded bars are removed by carriers onto a belt. Upon moving through the coil, the end is progressively heated to the required forming temperature. Fig. 10.8 Oval-coil (a) and conveyor...
Abstract
Because of its speed and ease of control, induction heating can be readily automated and integrated with other processing steps such as forming, quenching, and joining. Completely automated heating/handling/control systems have been developed and are offered by induction equipment manufacturers. This chapter deals with materials handling and automation. First, it summarizes basic considerations such as generic system designs, fixture materials, and special electrical problems to be avoided. Next, it describes and provides examples of materials-handling systems in induction billet heating, bar heating, heat treatment, soldering, brazing, and other induction-based processes. The final section discusses the use of robots for parts handling in induction heating systems.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400161
EISBN: 978-1-62708-316-4
... Abstract This chapter discusses the design and operation of electromechanical servo-drive presses. It begins by comparing the operating flexibility of servo-press drives with that of their conventional counterparts. It then explains the difference between direct-drive and belt and screw-driven...
Abstract
This chapter discusses the design and operation of electromechanical servo-drive presses. It begins by comparing the operating flexibility of servo-press drives with that of their conventional counterparts. It then explains the difference between direct-drive and belt and screw-driven servo presses and describes some of the innovations and improvements made possible with high-torque servo motors. The chapter provides examples of how servo presses are used in blanking, warm forming, and other applications and compares the operating characteristics of two 1100-ton presses, one driven by servo motors, the other by a mechanical crank.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740213
EISBN: 978-1-62708-308-9
... under the tool and adhering to the machined surface. Built-up edge formation can often be minimized or eliminated by reducing the depth of the cut, increasing the cutting speed, using positive rake tools, or applying a coolant. Fig. 9 Continuous chip with built-up edge. Source: Ref 6 Tool...
Abstract
This chapter covers the practical aspects of machining, particularly for turning, milling, drilling, and grinding operations. It begins with a discussion on machinability and its impact on quality and cost. It then describes the dimensional and surface finish tolerances that can be achieved through conventional machining methods, the mechanics of chip formation, the factors that affect tool wear, the selection and use of cutting fluids, and the determination of machining parameters based on force and power requirements. It also includes information on nontraditional machining processes such as electrical discharge, abrasive jet, and hydrodynamic machining, laser and electron beam machining, ultrasonic impact grinding, and electrical discharge wire cutting.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320063
EISBN: 978-1-62708-332-4
... of chaplets and chills in cast iron castings; guidelines for drafts, machine stock, tolerances, and contraction or shrink rule; and guidelines for pattern layouts and nesting are also covered. cast iron chaplets chills core making drafts machine stock manufacturability molding nesting...
Abstract
The casting engineer contributes to a successful component design by offering expertise in molding, core making, and material characteristics and by recommending the most suitable casting process to use to meet quality and cost targets. The casting engineer's responsibilities include recommending locator positioning; advising about lugs, hooks, or holes for casting handling through all processes; determining the choice of a parting plane and pouring orientation; designing cores for accurate positioning, suitable venting, and proper cleaning; guiding decisions about wall thicknesses and junctions; making suggestions about casting design to eliminate distortion; optimizing the gating design for slag-free metal; and establishing the feeding techniques to eliminate shrink porosity. This chapter provides the guidelines for these responsibilities. In addition, the guidelines for the use of chaplets and chills in cast iron castings; guidelines for drafts, machine stock, tolerances, and contraction or shrink rule; and guidelines for pattern layouts and nesting are also covered.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040115
EISBN: 978-1-62708-300-3
... the pitman arm or connecting rod, as illustrated in Fig. 11.8 . The flywheel, which is driven by an electric motor and “V” belts, stores energy that is used only during a small portion of the crank revolution, namely, during deformation of the formed material. Fig. 11.8 Schematic of a mechanical...
Abstract
This chapter discusses the design and operation of forging presses and hammers. It covers the most common types of presses, including hydraulic, mechanical, and screw presses, explaining how they work and comparing and contrasting their load and displacement profiles, stroke lengths, ram velocities, and energy and stiffness requirements. It also includes information on gravity- and power-drop hammers and where and how they are typically used.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870285
EISBN: 978-1-62708-314-0
... processing cycles (some as short as 30 seconds, although longer times are sometimes required to obtain the proper amount of crystallinity). Glass mat thermoplastic material is made using the double-belt process described in Chapter 6, “Thermoplastic Composite Fabrication Processes.” The material...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740325
EISBN: 978-1-62708-308-9
... backing, such as a wheel or belt, while buffing is the use of abrasives or abrasive compounds that adhere loosely to a flexible backing, such as a wheel. Polishing operations usually follow grinding and precede buffing. In general, polishing permits more aggressive abrading action than buffing. Polishing...
Abstract
This chapter covers a wide range of finishing and coating operations, including cleaning, honing, polishing and buffing, and lapping. It discusses the use of rust-preventative compounds, conversion coatings, and plating metals as well as weld overlay, thermal spray, and ceramic coatings and various pack cementation and deposition processes. It also discusses the selection and use of industrial paints and paint application methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400087
EISBN: 978-1-62708-258-7
... procedures described previously. Grinding: Using a belt sander with 80-grit silicon carbide paper, grind under water until about 1/3 of the cross section is removed. Continue grinding, using 120-grit silicon carbide paper. Rotate the specimen 90° between each grind, and rinse in flowing water. Stop just...
Abstract
This chapter discusses the important role of metallography and the metallographer in predicting and understanding the properties of metals and alloys. Examples are presented of a metallographer working as part of a team in a research laboratory of a large steel company and a metallographer working alone at a small iron foundry. The three basic areas in all metallography laboratories are discussed: the specimen preparation area, the polishing/etching area, and the observation/micrography area. Important safety issues in a metallographic laboratory are also considered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300179
EISBN: 978-1-62708-323-2
... steel. Fig. 7.11 Abrasion of various metals using the ASTM G174 two-body abrasion test (200 g, 680 belt passes, 30 μm alumina) There are a significant number of material innovations that came from cast iron technology. The iron-chromium alloys that are widely used in hardfacing are based...
Abstract
This chapter covers the friction and wear behaviors of cast irons. It describes the microstructure and metallurgy of gray, white, malleable, and ductile cast irons, their respective tensile properties, and their suitability for applications involving friction, various types of erosion, and adhesive and abrasive wear.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120079
EISBN: 978-1-62708-269-3
... and cutting processes. Conventional machining methods include turning, face milling, peripheral end milling, and climb cutting; drilling; tapping; reaming; wheel grinding, belt grinding, abrasive cutting, and hand abrasive grinding; hack sawing; and band sawing. Widely used nontraditional methods include...
Abstract
This chapter discusses the factors that influence the cost and complexity of machining titanium alloys. It explains how titanium compares to other metals in terms of cutting force and power requirements and how these forces, along with cutting speeds and the use of cutting fluids, affect tool life, surface finish, and part tolerances. The chapter also includes a brief review of nontraditional machining methods.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860035
EISBN: 978-1-62708-338-6
... achieve this, the usual methods being gear boxes, belts/pulleys, and chains/sprockets. Achieving a constant pitch was the first requirement for the mechanical machine programmer. However, the product design engineer demands specific wind angles for the pipe to optimize the performance of the composite...
Abstract
This chapter discusses the ways in which the evolution of filament winding software systems has capitalized on the inherent flexibility of computer numerical controlled winding machines and enhanced their productivity. It provides a detailed discussion on different types of geometries that can be wound, from the simple to the highly complex, with insight into the limitations, advantages, and challenges of each. Components covered include classic axisymmetric parts (rings, pipes, driveshafts, pipe reducers, tapered shafts, closed-end pressure vessels, and storage tanks), nonround sections (aeromasts, airfoils, box sections, and fuselage sections), curved-axis parts (elbows, ducts), and special applications (tees). Basic winding concepts, such as band pattern, are discussed and explained, and some simple predictive formulae are introduced. The chapter also provides examples of programming various geometries using advanced software tools and discusses how various materials, such as rovings, tow-preg, prepreg tape, and woven materials, affect winding program generation.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240349
EISBN: 978-1-62708-251-8
... melting and slag formation. (Slag floats on top of the molten iron and absorbs many of the unwanted impurities.) Fine ore is mixed with the coke and fluxes and heated in a sinter plant on a continuous moving belt on which the coke is ignited. The high temperatures generated fuse the ore particles...
Abstract
This chapter discusses various processes involved in the production of steel from raw materials to finished mill products. The processes include hot rolling, cold rolling, forging, extruding, or drawing. The chapter provides a detailed description of two main furnaces used for making steel: the electric arc furnace and the basic oxygen furnace. It also provides information on the classification and specifications for various steels, namely, plain carbon steels, low-carbon steels, medium-carbon plain carbon steels, and high-carbon plain carbon steels. The chapter concludes with a general overview of the factors influencing corrosion in iron and steel and a brief discussion of corrosion-resistant coatings.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980323
EISBN: 978-1-62708-342-3
... efficiency. As discussed in Chapter 3 , direct hot extrusion is the most widely used process, and the term extrusion usually refers to this process. The machinery used is usually based on so-called standard designs. The other extrusion processes usually require specially developed machines...
Abstract
The machinery and equipment required for rod and tube extrusion is determined by the specific extrusion process. This chapter provides a detailed description of the design requirements and principles of machinery and equipment for direct and indirect hot extrusion. It then covers the presses and auxiliary equipment for tube extrusion, induction furnaces for billet processing, handling systems for copper and aluminum alloy products, extrusion cooling systems, and age-hardening ovens. Next, the chapter describes the principles and applications of equipment for the production of aluminum and copper billets. Then, it focuses on process control in both direct and indirect hot extrusion of aluminum alloys without lubrication. The chapter describes the technology of electrical and electronic controls in the extrusion process. It ends with a discussion on the factors that influence the productivity and quality of the products in the extrusion process and methods for process optimization.
1