Skip Nav Destination
Close Modal
Search Results for
constant-amplitude loading
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 143 Search Results for
constant-amplitude loading
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 August 2005
Fig. 3.29 Basic fatigue loading parameters. (a) Constant amplitude loading. (b) Spectrum loading
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870201
EISBN: 978-1-62708-344-7
... then employ to analyze the crack growth behavior of various materials, including steels and nonferrous alloys, under constant-amplitude loading. The authors then deal with the effects of complex loading using crack retardation and crack closure models to show how load fluctuations can slow crack growth rates...
Abstract
This chapter provides a quantitative treatment of the cracking mechanisms associated with fatigue, drawing on the principles of fracture mechanics. It explains that although fracture mechanics originated with the aim of understanding sudden and catastrophic crack extension, the main premise of a stress field in the vicinity of the crack also applies to the study of cycle-by-cycle stable crack growth. A detailed review is given of the many developments and discoveries that helped shape the theory and methods collectively defined as crack mechanics, which the authors then employ to analyze the crack growth behavior of various materials, including steels and nonferrous alloys, under constant-amplitude loading. The authors then deal with the effects of complex loading using crack retardation and crack closure models to show how load fluctuations can slow crack growth rates and even cause total crack arrest. They also present the results of a study on crack initiation, propagation, and fracture in circular (rather than rectangular) specimens and a fatigue study on ductile and quasi-brittle materials.
Image
Published: 01 March 2006
Fig. 10.30 Fatigue fracture surface of 7075-T6 aluminum showing the striations produced by a program consisting of a severe overload followed by ten constant amplitude load cycles. Source: Ref 10.24
More
Image
Published: 01 December 2003
Fig. 8 Schematic illustration of the three distinct regimes of crack propagation rate observed in fatigue testing under constant amplitude loading conditions. For polymers, typical values of m range from 3 to 50, depending on the polymer system.
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780238
EISBN: 978-1-62708-281-5
... for fatigue life prediction is based on an endurance limit established from stress-log cycle plots, also known as S - N curves. In these tests, uncracked specimens are subjected to a constant amplitude load cycle until failure occurs. Often, fatigue tests are performed on closed-loop servohydraulic...
Abstract
This article reviews fatigue test methodologies, provides an overview of general fatigue behavior (crack initiation and propagation) in engineering plastics, and discusses some of the factors affecting the fatigue performance of polymers. In addition, it provides information on fractography that provides useful insight into the nature of fracture processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540383
EISBN: 978-1-62708-309-6
.... crack growth fatigue life fatigue spectrum spectrum editing FEW STRUCTURAL APPLICATIONS involve only constant-amplitude load cycles throughout their intended service life. In a series of loading events commonly known as a “spectrum,” the loading cycles can be very irregular and of random...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540121
EISBN: 978-1-62708-309-6
... Infinite-Life (Stress-Based) Fatigue Strength Fatigue loading belongs to one of two categories: constant amplitude or variable amplitude (spectrum loading). Schematic representations of these loading profiles, including definitions of the events, are given in Fig. 3.29 . In Fig. 3.29(b) , the terms...
Abstract
This chapter examines the stress-strain characteristics of metals and alloys subjected to cyclic loading and the cumulative effects of fatigue. It begins by explaining how a single load reversal can lower the yield stress of a material and how repeated reversals can cause strain hardening and softening, both of which lead to premature failure. It then discusses the stages of fatigue fracture, using detailed images to show how cracks initiate and grow and how they leave telltale marks on fracture surfaces. It goes on to describe fatigue life assessment methods and demonstrate their use on different metals and alloys. The chapter also discusses design-based approaches for preventing fatigue failures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540431
EISBN: 978-1-62708-309-6
.... In the case of composite materials, the constant-amplitude loading cycles applied properties of the laminate can be tailored to consecutively, or a spectrum loading se- the exact loading and stiffness requirements quence of nite length that is repeated iden- of the design by orienting the bers in a pre...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540215
EISBN: 978-1-62708-309-6
... shape a /2 c ranged from 0.262 to 0.533. The specimens were subjected to constant-amplitude cyclic loading, with the minimum to maximum applied stress ratio equal to 0.1. The maximum applied stress levels were not the same on every specimen. It covers a wide range of applied stress levels, 13 ≤ σ max...
Abstract
This chapter presents a fracture-mechanics-based approach to damage tolerance, accounting for mechanical, metallurgical, and environmental factors that drive crack development and growth. It begins with a review of stress-intensity factors corresponding to a wide range of crack geometries, specimen configurations, and loading conditions. The discussion covers two- and three-dimensional cracks as well as the use of correction factors and problem-simplification techniques for dealing with nonstandard configurations. The chapter goes on to describe how fatigue loading affects crack growth rates in each of the three stages of progression. Using images, diagrams, and data plots, it reveals how cracks advance in step with successive stress cycles and explains how fatigue crack growth rates can be determined by examining striations on fracture specimens and correlating their widths with stress profiles. It also describes how material-related factors, load history, corrosion, and temperature affect crack growth rates, and discusses the steps involved in life assessment.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.9781627083096
EISBN: 978-1-62708-309-6
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780249
EISBN: 978-1-62708-281-5
.... This area remains almost constant for a number of cycles and then increases significantly, as demonstrated clearly in Fig. 4 . This effect is attributed to the production and growth of crazes after some induction period. For ABS, an increase of stress amplitude causes the energy to dissipate per half-cycle...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870075
EISBN: 978-1-62708-344-7
... reversed stress amplitude vs. fatigue life relationship for 300M Fig. 4.33 Determination of constants Q and P for 300M steel Fig. 4.34 Comprehensive model for mean stress representation of fatigue results for 300M steel. Q = 4.83; P = –0.139 Fig. 4.29 Extension of data...
Abstract
This chapter discusses the concept of mean stress and explains how it is used in fatigue analysis and design. It begins by examining the stress-strain response of test samples subjected to cyclic forces and strains, noting important features and what they reveal about materials and their fatigue behaviors. It then discusses the challenge of developing hysteresis loops for complex loading patterns and accounting for effects such as ratcheting and stress relaxation. The sections that follow provide a summary of the various ways mean stress is described in the literature and the methods used to calculate or predict its effect on the fatigue life of machine components. The discussion also sheds light on why tensile mean stress is detrimental to both fatigue life and ductility, while compressive mean stress is highly beneficial.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610147
EISBN: 978-1-62708-303-4
.... Source: Ref 13 Cumulative Damage Fatigue tests are often conducted under simple conditions, such as constant amplitude and constant frequency. However, in real structures the loading conditions are rarely simple. Many structures are subjected to a range of fluctuating loads, mean stress...
Abstract
This chapter discusses the factors that play a role in fatigue failures and how they affect the service life of metals and structures. It describes the stresses associated with high-cycle and low-cycle fatigue and how they differ from the loading profiles typically used to generate fatigue data. It compares the Gerber, Goodman, and Soderberg methods for predicting the effect of mean stress from bending data, describes the statistical nature of fatigue measurements, and explains how plastic strain causes cyclic hardening and softening. It discusses the work of Wohler, Basquin, and others and how it led to the development of a strain-based approach to fatigue and the use of fatigue strength and ductility coefficients. It reviews the three stages of fatigue, beginning with crack initiation followed by crack growth and final fracture. It explains how fracture mechanics can be applied to crack propagation and how stress concentrations affect fatigue life. It also discusses fatigue life improvement methods and design approaches.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240243
EISBN: 978-1-62708-251-8
.... Fig. 14.12 Fatigue life in terms of total strain 14.4 Cumulative Damage Fatigue tests are often conducted under simple conditions, such as constant amplitude and constant frequency. However, in real structures, the loading conditions are rarely simple. Many structures are subjected...
Abstract
Fatigue failures occur due to the application of fluctuating stresses that are much lower than the stress required to cause failure during a single application of stress. This chapter describes three basic factors that cause fatigue: a maximum tensile stress of sufficiently high value, a large enough variation or fluctuation in the applied stress, and a sufficiently large number of cycles of the applied stress. The discussion covers high-cycle fatigue, low-cycle fatigue, and fatigue crack propagation. The chapter then discusses the stages where fatigue crack nucleation and growth occurs. It describes the most effective methods of improving fatigue life. The chapter also explains the effect of geometrical stress concentrations on fatigue. In addition, it explores the environmental effects of corrosion fatigue, low-temperature fatigue, high-temperature fatigue, and thermal fatigue. Finally, the chapter discusses a number of design philosophies or methodologies to deal with design against fatigue failures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870009
EISBN: 978-1-62708-344-7
... analysis of the cyclic stress-strain behavior of materials under uniaxial stress and strain cycling. It first considers the case of a stable material under constant-amplitude strain cycling then broadens the discussion to materials that harden or soften with continued strain reversals. It compares...
Abstract
This chapter provides a detailed analysis of the cyclic stress-strain behavior of materials under uniaxial stress and strain cycling. It first considers the case of a stable material under constant-amplitude strain cycling then broadens the discussion to materials that harden or soften with continued strain reversals. It compares and contrasts the response patterns of such materials, explaining how the movement of dispersed particles and dislocations influences their behavior. It then examines the behavior of materials under uniaxial strain reversals of varying amplitude and explains how to construct double-amplitude stress-strain curves that account for complex straining histories. For special cases, those involving complex materials such as gray cast iron or highly complex straining patterns, the chapter presents other methods of analysis, including the rainflow cycle counting method, mechanical modeling based on displacement-limited elements, Wetzel’s method, and deformation modeling. It also explains the difference between force cycling and stress cycling and presents alternate techniques for predicting whether a material will become harder or softer in response to strain cycling.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140193
EISBN: 978-1-62708-335-5
..., tensile stress-strain curves, monotonic and cyclic Al-Cu-Ni-Mg system. Tested at room temperature. Reference ASTM E 466 for cyclic force-controlled constant-amplitude fatigue test practices. UNS A02420 Source: John Deere Materials Data, Deere & Co., Moline, IL, p C13 Fig. D3.12 A332.0-T5...
Abstract
The stress-strain curves in this data set are representative examples of the behavior of several cast alloys under tensile or compressive loads. The curves are arranged by alloy designation. Each figure cites the original source of the curve and provides pertinent background information as available. Compressive tangent modulus curves are presented for certain alloys. The effects of cyclic loading are given on several curves.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.9781627082815
EISBN: 978-1-62708-281-5
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200083
EISBN: 978-1-62708-354-6
... extension of 0.2%. As the strain is increased beyond the yield point, the material strain-hardens and the stress must be increased to continue the deformation. As the tensile specimen elongates, its cross-sectional area decreases to maintain an essentially constant volume. At the maximum load point...
Abstract
This chapter provides an overview of factors that must be considered in the design of structural components for satisfactory service performance in terms of mechanical behavior of steel castings. The chapter discusses designing against yielding, excessive deflection, and creep and stress rupture. The chapter describes the three main approaches to evaluating and designing structures relative to fatigue resistance: the S-N curve approach for high cycle fatigue, the strain range approach for low cycle fatigue, and the fracture mechanics approach. Two approaches to design against brittle fracture are described, the ductile to brittle transition concept and the fracture mechanics approach. The chapter also discusses several types of corrosion behavior and emphasizes the need to interact with corrosion specialists in the design process. It illustrates the unique advantages that designers may gain by designing components as castings to achieve low stress concentrations economically.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870123
EISBN: 978-1-62708-344-7
... using baseline tests for which 0.3 < n 1 / N 1 < 0.5. (a) Life relations. (b) Predicted vs. experimental lives. Source: Ref 6.22 Fig. 6.31 Application of an ordinary linear damage rule to two-level tests where the basic life relations determined from constant amplitude tests...
Abstract
This chapter addresses the cumulative effects of fatigue and how to determine its impact on component lifetime and performance. It begins by defining a loading history and its corresponding hysteresis loops that exposes the deficiencies of some of the theories discussed. It then proceeds to demonstrate the methods commonly used to analyze cumulative fatigue damage and its effect on component life starting with the classical linear damage rule. After pointing out the inherent limitations of the model, it presents a method that incorporates two linear damage rules, one applying prior to crack initiation and the other after the crack has started. Although the method accounts somewhat better for loading-order effects, the transition in behavior that the rules presume to model occurs prior to any signs of cracking. Two modified versions of the double linear damage rule method, neither of which are related to a physical crack initiation event, are subsequently presented along with several applications showing how the different methods compare. The examples provided include two-level and multilevel tests, a gas-turbine engine compressor disk, and the cumulative damage associated with the irreversible hardening of type 304 stainless steel.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780433
EISBN: 978-1-62708-281-5
... ionization detector ber-reinforced polymer Fourier transform infrared complex modulus elastic, or storage, modulus viscous, or loss, modulus loss tangent, or dissipation factor gel permeation chromatography height Planck s constant high-density polyethylene heat-de ection temperature high-impact polystyrene...