Skip Nav Destination
Close Modal
Search Results for
computational modeling
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 350 Search Results for
computational modeling
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 March 2006
Fig. 2.24 Computer modeled cyclic stress-strain behavior compared with experimental results for gray cast iron. (a) Experimental. (b) Computed. Source: Ref 2.9
More
Image
Published: 01 March 2006
Fig. 2.25 Computer model behavior under complex straining pattern for gray cast iron. (a) Strain control. (b) Stress control. Source: Ref 2.9
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930141
EISBN: 978-1-62708-359-1
... weldment using extensive experimental data and a computer model that simulates the fatigue resistance of weldments. Next, the process of fatigue in weldments is discussed in general terms, and the service conditions that favor long crack growth and the conditions that favor crack nucleation are contrasted...
Abstract
This article is intended to help engineers understand why the fatigue behavior of weldments can be such a confusing and seemingly contradictory topic and hopefully to clarify this complex subject. It first reexamines the factors influencing the fatigue behavior of an individual weldment using extensive experimental data and a computer model that simulates the fatigue resistance of weldments. Next, the process of fatigue in weldments is discussed in general terms, and the service conditions that favor long crack growth and the conditions that favor crack nucleation are contrasted. The article then presents experimental data that show the effect of weldment geometry on fatigue resistance. Several useful geometry classification systems are compared. Finally, a computer model is employed to investigate the behavior of two hypothetical weldments: a discontinuity-containing ("Nominal") weldment and a discontinuity-free ("Ideal") weldment.
Image
in Dealing with Friction in Design Engineering
> Tribomaterials: Properties and Selection for Friction, Wear, and Erosion Applications
Published: 30 April 2021
Fig. 3.5 Schematic of molecular/atomic dynamics that uses computers for model rubbing at the atom (atom “a” versus atom “b”) or molecular level
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040193
EISBN: 978-1-62708-300-3
... Abstract This chapter discusses the use of finite-element modeling in forging design. It describes key modeling parameters and inputs, mesh generation and computation time, and process modeling outputs such as metal flow, strain rate, loading profiles, and microstructure. It also includes...
Abstract
This chapter discusses the use of finite-element modeling in forging design. It describes key modeling parameters and inputs, mesh generation and computation time, and process modeling outputs such as metal flow, strain rate, loading profiles, and microstructure. It also includes a variety of application examples.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420263
EISBN: 978-1-62708-310-2
... Abstract This chapter provides an overview of a computational method, called CALPHAD, used for the study of phase equilibria in multicomponent systems. It describes the thermodynamic models and calculation techniques employed in the software and explains how it applies to complex alloys used...
Abstract
This chapter provides an overview of a computational method, called CALPHAD, used for the study of phase equilibria in multicomponent systems. It describes the thermodynamic models and calculation techniques employed in the software and explains how it applies to complex alloys used in industry. It also provides examples showing how CALPHAD has been used to determine the formability of metallic glass, calculate the dilation of stainless steel during phase transformation, and predict the beta transus and approach curves of commercial titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200133
EISBN: 978-1-62708-354-6
... Abstract This chapter gives an overview of how steel castings may be effectively adapted to modern concurrent engineering processes. The chapter discusses computer aided design programs, solid modeling, solidification simulation programs, and rapid prototyping. computer-aided design...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.aceg.t68410009
EISBN: 978-1-62708-280-8
... performance) as the shape evolves through different iterations of functionality and manufacturability. The designer constructs a three-dimensional (3D) model, creates a finite element mesh, and applies the computed loads (for example, loads derived from vehicle loads) to the attachment points...
Abstract
This chapter is a brief account of various factors pertinent to the development of an engineering component. The discussion covers the disciplines and interactions of design development, engineering of component design, validation of design and process analysis, and matrix of design and manufacturing elements.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040083
EISBN: 978-1-62708-300-3
... with corresponding computed data. It also includes an example in which flow stress and friction were measured in compressed aluminum rings and the results used to verify the accuracy of predicted values. FEM simulation flow stress friction inverse analysis verification 8.1 Introduction The finite...
Abstract
This chapter discusses the role of inverse analysis in providing input data for finite element simulations of metal forming processes. It describes the basic procedures for determining flow stress and friction by inverse analysis and for comparing experimental measurements with corresponding computed data. It also includes an example in which flow stress and friction were measured in compressed aluminum rings and the results used to verify the accuracy of predicted values.
Image
Published: 01 June 2016
Fig. 3.9 Concurrent simulation of bonding and rebounding using an adiabatic quasi-two-dimensional model in ABAQUS/Explicit using the Eulerian algorithm. The oxide layer is described by a pressure-dependent yield model, allowing dilation at negligible tensile strength. For this example
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040237
EISBN: 978-1-62708-300-3
... are given for not only the plastic deformation but also for elastic deformation such as residual stresses and springback. Rigid-plastic simulation assumes material to deform only plastically, and, in comparison to elastic-plastic simulations, it results in shorter computing time. 18.2 Process Modeling...
Image
Published: 01 June 1983
Figure 1.13 Frequency distribution of copper computed from polycrystalline elastic constants using three lattice-dynamics models: Einstein, Debye, and Born—Brillouin.
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.tb.hpcspa.t54460067
EISBN: 978-1-62708-285-3
... conditions, that is, depending on the values of the particle velocity and temperature, v p and T p , upon particle impact. It is possible to compute the temporal evolution of v p and T p —the in-flight history—from models of flow of gas and particles in the prechamber, nozzle, and free jet...
Abstract
The modeling and simulation activities in the field of high-pressure cold spray can be divided into two main parts: solid mechanics and fluid dynamics. This chapter focuses on these parts of modeling work in cold spray research. The discussion covers the objective, principal concepts, methods, and outcome of modeling and simulation of particle impact and of in-flight history of particles in cold spraying. The concept of integration of particle impact and fluid flow modeling to optimize cold spray deposition for a given material is also explained.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200140
EISBN: 978-1-62708-354-6
... in computers as either “wire frame” models, or as “solid” models in “3-D,” having length, width, and thickness. The shape can be developed into various views on “2-D” drawings, or can be sent electronically to a pattern or model shop, where the computer information is used to drive tool paths for a machine...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040185
EISBN: 978-1-62708-300-3
... finite-element analysis that requires a rather sophisticated software package, elaborate input data preparation, and considerable computer time. Therefore, it is often desirable to use a simple method for making quick estimates by using the so called “slab method” of analysis. This method takes...
Abstract
This chapter presents a relatively simple method for estimating forging loads and flow stresses. The method uses the slab analysis technique and accounts for material properties, friction and heat transfer, press ram speed, forging geometry, and billet and die temperatures. The chapter demonstrates the use of the method and compares the results with measured values.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410487
EISBN: 978-1-62708-265-5
... the interdisciplinary and complex components of a predictive modeling program, is noted here. The effort was sponsored under the auspices of the National Center for Manufacturing Sciences and established a consortium team of corporations, national laboratories, and universities that brought extensive computing power...
Abstract
Temperature and deformation gradients developed in the course of manufacturing can have undesired effects on the microstructures along their path; the two most common being residual stress and distortion. This chapter discusses these manufacturing-related problems and how they can be minimized by heat treatments. It also provides information on residual stress evaluation and prediction techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870009
EISBN: 978-1-62708-344-7
... for gray iron. Source: Ref 2.9 Fig. 2.22 Combined compound element behavior. Source: Ref 2.9 Fig. 2.23 Spring-slider-gap model for gray iron with spring constants. Source: Ref 2.9 Fig. 2.24 Computer modeled cyclic stress-strain behavior compared with experimental results...
Abstract
This chapter provides a detailed analysis of the cyclic stress-strain behavior of materials under uniaxial stress and strain cycling. It first considers the case of a stable material under constant-amplitude strain cycling then broadens the discussion to materials that harden or soften with continued strain reversals. It compares and contrasts the response patterns of such materials, explaining how the movement of dispersed particles and dislocations influences their behavior. It then examines the behavior of materials under uniaxial strain reversals of varying amplitude and explains how to construct double-amplitude stress-strain curves that account for complex straining histories. For special cases, those involving complex materials such as gray cast iron or highly complex straining patterns, the chapter presents other methods of analysis, including the rainflow cycle counting method, mechanical modeling based on displacement-limited elements, Wetzel’s method, and deformation modeling. It also explains the difference between force cycling and stress cycling and presents alternate techniques for predicting whether a material will become harder or softer in response to strain cycling.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ahsssta.t53700263
EISBN: 978-1-62708-279-2
.... Fig. 17.5 Superposition of predicted microstructure design on strength-ductility plot. Source: Ref 17.1 Computer modeling results have shown that the third-generation AHSS will include steel alloys with complex microstructures consisting of high-strength phases such as ultrafine-grained...
Abstract
This chapter focuses on key requirements for obtaining third-generation advanced high-strength steels (AHSS). The discussion covers the microstructure design for AHSS, novel AHSS processing routes, the development of nanostructured AHSS, and the development of third-generation AHSS by the Integrated Computational Materials Engineering approach.
Series: ASM Technical Books
Publisher: ASM International
Published: 31 August 2023
DOI: 10.31399/asm.tb.mdsbktmse.t56070001
EISBN: 978-1-62708-451-2
... set of conditions. It also provides a walk-through on the use of LAMMPS, an open-source molecular dynamics simulator, discussing the selections and inputs of relevance to practical materials problems. computational materials analysis LAMMPS molecular dynamics materials modeling numerical...
Abstract
This chapter familiarizes readers with the basic theory of molecular dynamics and its application in the study of materials. It explains how material properties and behaviors are determined through the iterative calculation of motion equations for a collection of atoms under a given set of conditions. It also provides a walk-through on the use of LAMMPS, an open-source molecular dynamics simulator, discussing the selections and inputs of relevance to practical materials problems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2000
DOI: 10.31399/asm.tb.aet.t68260029
EISBN: 978-1-62708-336-2
... ) developed a two-dimensional computer model for the hot extrusion of aluminum based on a commercially available finite difference code (NOVA 20). They used the model to predict how the effects of extrusion speed, initial billet temperature, and static yield stress would affect the peak temperature and ram...
Abstract
This chapter provides an overview of the thermodynamics of extrusion. It begins by presenting a thermodynamic model of the extrusion process expressed in the form of finite difference equations. It then explains how the model accounts for multiple sources of heat generation, the influence of principal variables on temperature rise, and different types of temperature measurements. It also discusses the benefits of isothermal extrusion and how it achieves consistent mechanical properties in extruded components.
1