Skip Nav Destination
Close Modal
Search Results for
compound layer
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 536 Search Results for
compound layer
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2003
Fig. 5 Compound layer thickness in relation to treating time for various materials. Note that the time scale is logrithmic. Source: Ref 4
More
Image
Published: 01 December 2003
Fig. 16 Compound layer in type 316 stainless steel consisting entirely of S-phase. SBN, 455 °C (850 °F) for 5 h. Marble’s reagent, 1000×. Source: Ref 12
More
Image
Published: 01 December 2003
Image
Published: 01 December 2003
Image
Published: 01 August 1999
Fig. 12.29 (Part 2) (f) Variation of hardness with depth beneath the compound layer in the carbonitrided bar illustrated in Fig. 12.28 and 12.29 .
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900065
EISBN: 978-1-62708-350-8
... Abstract The compound zone that forms on the surface of nitrided steels is often called the white layer. When the nitrided sample is sectioned through the case, and then polished and etched with a standard solution of nital (2 to 5% nitric acid and alcohol), the immediate surface etches out...
Abstract
The compound zone that forms on the surface of nitrided steels is often called the white layer. When the nitrided sample is sectioned through the case, and then polished and etched with a standard solution of nital (2 to 5% nitric acid and alcohol), the immediate surface etches out as white in appearance above the nitrided case. This chapter focuses on the methods to control the compound zone, or white layer. It first provides information on a test to determine the presence of the white layer, and discusses the processes involved in the reduction of the compound zone by the two-stage process. Next, it describes other methods for controlling compound zone formation, and, finally, reviews the factors related to the determination of case depth in nitriding.
Image
Published: 01 January 2015
Fig. 21.45 Compound layers (top) and concentration profiles (bottom) of iron gas-nitrocarburized at 570 °C (1058 °F) for 15 h. Courtesy of E. J. Mittemeijer, Delft University of Technology. Source: Ref 21.79
More
Image
Published: 01 January 2015
Fig. 21.46 Compound layers in sequence as in Fig. 21.32 in iron gasnitrocarburized at 570 °C (1058 °F) for 24 h. Courtesy of E.J. Mitteneijer, Delft University of Technology. Source: Ref 21.79
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900031
EISBN: 978-1-62708-350-8
... Abstract Formation of the nitrided case begins through a series of nucleated growth areas on the steel surface. These nucleating growth areas will eventually become what is known as the compound layer or, more commonly, the white layer. This chapter discusses the influence of carbon...
Abstract
Formation of the nitrided case begins through a series of nucleated growth areas on the steel surface. These nucleating growth areas will eventually become what is known as the compound layer or, more commonly, the white layer. This chapter discusses the influence of carbon on the compound zone. It explains how to control and calculate compound zone thickness. Compound zone thickness can be controlled by dilution, the two-stage Floe process, or by ion nitriding. The chapter describes the factors affecting surface case formation.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900219
EISBN: 978-1-62708-350-8
... Abstract Gaseous ferritic nitrocarburizing, like salt bath nitrocarburizing, involves the introduction of carbon and nitrogen into steel in order to produce a thin layer of iron carbonitride and nitrides, the "white layer" or compound layer, with an underlying diffusion zone containing...
Abstract
Gaseous ferritic nitrocarburizing, like salt bath nitrocarburizing, involves the introduction of carbon and nitrogen into steel in order to produce a thin layer of iron carbonitride and nitrides, the "white layer" or compound layer, with an underlying diffusion zone containing dissolved nitrogen and iron (or alloy) nitrides. This chapter first presents the development and principles of the process. It then discusses the properties of gaseous ferritic nitrocarburized components. The chapter also presents the applications for the ferritic nitrocarburizing process. It provides an overview of the safety considerations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900001
EISBN: 978-1-62708-350-8
... of a compound layer on the surface of a nitrided steel. Floe process nitriding steel THE NITRIDING PROCESS, first developed in the early 1900s, continues to play an important role in many industrial applications. Along with the derivative nitrocarburizing process, nitriding often is used...
Abstract
This chapter discusses the metallurgical considerations and process requirements of nitriding. It presents the pioneering work of Adolph Machlet and Adolph Fry and presents early developments. One such development is the Floe process, a two-stage treatment used to reduce the formation of a compound layer on the surface of a nitrided steel.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900153
EISBN: 978-1-62708-350-8
... Abstract The nitriding process can be applied to various materials and part geometries. This chapter focuses on tool steels, pure irons, low-alloy steels, and maraging steels. Various considerations such as the surface metallurgy requirements of the die, including case depth, compound layer...
Abstract
The nitriding process can be applied to various materials and part geometries. This chapter focuses on tool steels, pure irons, low-alloy steels, and maraging steels. Various considerations such as the surface metallurgy requirements of the die, including case depth, compound layer formation, and temperature, are also discussed in this chapter. The chapter also addresses steel selection and surface metallurgy of gears.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900201
EISBN: 978-1-62708-350-8
... 40 years since the development of the low-temperature cyanide-based salt bath nitriding process. Salt bath nitriding will form not only the compound layer at the steel surface, but will allow nitrogen as well as carbon to diffuse into the surface to improve fatigue strength, torsional strength...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900119
EISBN: 978-1-62708-350-8
... of Distortion Distortion is an inherent result of heat treatment. It can be reduced but not eliminated ( Ref 2 ). However, distortion can be managed by controlling: Ramp-up time to process temperature Process temperature Process time at temperature Process gas chemistry and compound-layer...
Abstract
Distortion is defined as an irreversible and usually unpredictable dimensional change in a component due to thermal processing or temperature variations and loading in service. This chapter describes two types of distortion: size distortion and shape distortion. It addresses how distortion can be managed by controlling certain factors. The chapter discusses the cause and effect of distortion during nitriding, the processes involved in stock removal prior to nitriding, and the criteria for post-machining operations.
Image
Published: 30 April 2024
Fig. 8.1 Cross section of nitrided region of an iron-base ferritic specimen/component showing the compound layer and the diffusion zone with their (possible) constituents. Source: Ref 1
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2024
DOI: 10.31399/asm.tb.phtpp.t59380153
EISBN: 978-1-62708-456-7
... zone. Generally, favorable wear and corrosion properties are due to specific compound layers, and the favorable fatigue and wear properties (if the compound layer has been removed after nitriding or its formation has been avoided) are due to the diffusion zone ( Fig. 8.1 ). Fig. 8.1 Cross...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900193
EISBN: 978-1-62708-350-8
... with the introduction of nitrogen and carbon. Scuffing Resistance Scuffing resistance means the resistance to wear on the metal surface. This is accomplished by changing the nature of the surface compound layer, which is also known as the white layer. The completed compound layer will form with both epsilon (ε...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900139
EISBN: 978-1-62708-350-8
... in the nitriding process. The hydrogen acts as a reducing gas to reduce (with heat) surface oxides on the steel and, perhaps more importantly, to influence and regulate the composition of the compound zone (white layer) as shown in Fig. 2 . Fig. 2 Commencement of nitride formation on a steel surface. Note...
Abstract
Process gas control for plasma (ion) nitriding is a matter of estimating the flows necessary to accomplish the required surface metallurgy. This chapter reviews several studies aimed at better understanding process gas control in plasma nitriding and its influence on compound zone formation. Emphasis is placed on the effect of sputtering on the kinetics of compound zone formation. The discussion covers the processes involved in process gas control analysis by photo spectrometry and mass spectrometry and the difficulties associated with gas analysis.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900111
EISBN: 978-1-62708-350-8
... control is variable, the compound layer can be controlled—a critical factor in surface performance. As with the conventional ammonia gas nitriding furnace, many grades of steel can be processed effectively using the fluidized-bed technique. The types of steels that can be treated, including all...
Abstract
A fluidized-bed furnace system can be used for the gas nitriding process. This chapter focuses on fluidized-bed nitriding. It discusses the methods of heating a fluidized bed. The heating system can be electrical or gas, and internal or external. The chapter describes nitriding and oxynitriding processes in the fluidized-bed furnace. It also explains how to operate the fluid bed for nitriding. The chapter provides a discussion on the measurement of the gas dissociation.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900071
EISBN: 978-1-62708-350-8
... on the stability of surface layers and processes involved in the degradation of surface finish and control of the compound zone formation. Gases primarily used for ion nitriding and the control parameters used in ion nitriding are also covered. The chapter also presents the philosophies and advantages...
Abstract
This chapter begins with an overview of the history of ion nitriding. This is followed by sections that describe how the ion nitriding process works, glow discharge characteristics, process parameters requiring good control, and the applications of plasma processing. The chapter explores what happens in the ion nitriding process and provides information on its gas ratios. It describes the reactions that occur at the surface of the material being treated during iron nitriding and defines corner effect and nitride networking. Further, the chapter provides information on the stability of surface layers and processes involved in the degradation of surface finish and control of the compound zone formation. Gases primarily used for ion nitriding and the control parameters used in ion nitriding are also covered. The chapter also presents the philosophies and advantages of the plasma generation technique for nitriding. It concludes with processes involved in oxynitriding.
1