Skip Nav Destination
Close Modal
Search Results for
composite matrices
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 92 Search Results for
composite matrices
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030237
EISBN: 978-1-62708-349-2
... interference contrast, 20× objective Abstract Polymer composite materials are subject to degradation if not appropriately protected from the environment. Composite materials having polymeric matrices are susceptible to degradation from heat, sunlight, ozone, atomic oxygen (in space), moisture...
Abstract
Polymer composite materials are subject to degradation if not appropriately protected from the environment. Composite materials having polymeric matrices are susceptible to degradation from heat, sunlight, ozone, atomic oxygen (in space), moisture, solvents (chemicals), fatigue, excessive loading, and combinations of these environmental conditions. This chapter discusses the effects of heat, ultraviolet-light, and atomic oxygen on composite materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870063
EISBN: 978-1-62708-314-0
... matrices for advanced composites are classified as either thermosets or thermoplastics. Thermosets are low molecular weight, low viscosity monomers (≈2000 centipoise) that are converted during curing into three-dimensional crosslinked structures that are infusible and insoluble. Crosslinking ( Fig. 3.1...
Abstract
This chapter discusses the use of thermoset and thermoplastic resins in polymer matrix composites. It begins by explaining how the two classes of polymer differ and how it impacts their use as matrix materials. It then goes on to describe the characteristics of polyester, vinyl ester, epoxy, bismaleimide, cyanate ester, polyimide, and phenolic resins and various toughening methods. The chapter also covers thermoplastic matrix materials and product forms and provides an introduction to the physiochemical tests used to characterize resins and cured laminates.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030001
EISBN: 978-1-62708-349-2
... This chapter provides a general description of materials and methods for manufacturing high-performance composites. The materials covered are polymer matrices and prepreg materials and the methods include infusion processes, composite-toughening methods, matrix-toughening methods, and dispersed-phase...
Abstract
This chapter provides a general description of materials and methods for manufacturing high-performance composites. The materials covered are polymer matrices and prepreg materials and the methods include infusion processes, composite-toughening methods, matrix-toughening methods, and dispersed-phase toughening. In addition, the chapter provides information on interlayer-toughened composites and honeycomb or foam structure composite materials. It also discusses the processes in optical microscopy of composite materials.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.9781627083492
EISBN: 978-1-62708-349-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030211
EISBN: 978-1-62708-349-2
... thermosetting matrices made from renewable resources. In this study, a low-temperature-curing matrix was developed from renewable compounds found in sugars, limes, vegetable oils, and nuts. Optical microscopy techniques were used to gain insight into the morphology of this bamboo fiber composite system...
Abstract
Microstructural analysis of the composite matrix is necessary to understand the performance of the part and its long-term durability. This chapter focuses on the microstructural analysis of engineering thermoplastic-matrix composites and the influence of cooling rate and nucleation on the formation of spherulites in high-temperature thermoplastic-matrix carbon-fiber-reinforced composites. It also describes the microstructural analysis of a bio-based thermosetting-matrix natural fiber composite system.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030089
EISBN: 978-1-62708-349-2
... surfaces scatters the light, leaving the image with a fogged appearance or a center “hot spot.” Circular polarized light removes both the fogging and the hot spot from the image. It is often found that polymeric matrices in composite materials do not display much contrast when viewed using...
Abstract
The analysis of composite materials using optical microscopy is a process that can be made easy and efficient with only a few contrast methods and preparation techniques. This chapter is intended to provide information that will help an investigator select the appropriate microscopy technique for the specific analysis objectives with a given composite material. The chapter opens with a discussion of macrophotography and microscope alignment, and then goes on to describe various illumination techniques that are useful for specific analysis requirements. These techniques include bright-field illumination, dark-field illumination, polarized-light microscopy, interference and contrast microscopy, and fluorescence microscopy. The chapter also provides a discussion of sample preparation materials such as dyes, etchants, and stains for the analysis of composite materials using optical microscopy.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030177
EISBN: 978-1-62708-349-2
... and/or create a dispersed second phase, thereby enhancing the fracture toughness of the thermosetting matrix. These matrices offered novel design capabilities for composites in a variety of aircraft applications. To improve the damage tolerance of composite materials even further, an engineering approach...
Abstract
The second-generation composite materials were added to increase the strain to failure of the primary phase and/or create a dispersed second phase, thereby enhancing the fracture toughness of the thermosetting matrix. These matrices offered novel design capabilities for composites in a variety of aircraft applications. To improve the damage tolerance of composite materials even further, an engineering approach to toughening was used to modify the highly stressed interlayer with either a tougher material or through the use of preformed particles, leading to the third generation of composite materials. This chapter discusses the development, processes, application, advantages, and disadvantages of dispersed-phase toughening of thermoset matrices. Information on the processes of particle interlayer toughening of composite materials is also included.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030159
EISBN: 978-1-62708-349-2
... interphase during cure ( Ref 3 ). Composite matrices are often toughened, which can increase the stress level that is necessary to initiate microcracking. The location of the toughness modifiers in the composite significantly affects the microcracking, as does the concentration of the toughener ( Ref 4...
Abstract
The formation of microcracks in composite materials may arise from static-, dynamic-, impact-, or fatigue-loading situations and also by temperature changes or thermal cycles. This chapter discusses the processes involved in the various methods for the microcrack analysis of composite materials, namely bright-field analysis, polarized-light analysis, contrast dyes analysis, and dark-field analysis. The analysis of microcracked composites using epi-fluorescence is also covered. In addition, the chapter describes the procedures for the determination and recording of microcracks in composite materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870573
EISBN: 978-1-62708-314-0
... such as alumina, or nonoxide fibers such as silicon carbide, are used in glass, glass-ceramic, and crystalline ceramic matrices. Most high-performance oxide and nonoxide continuous fibers are expensive, further increasing the high cost of ceramic matrix composites. The cost and great difficulty of consistently...
Abstract
This chapter discusses the types of fibers and matrix materials used in ceramic matrix composites and the role of interfacial coatings. It describes the methods used to produce ceramic composites, including powder processing, slurry infiltration and consolidation, polymer infiltration and pyrolysis, chemical vapor infiltration, directed metal oxidation, and liquid silicon infiltration.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550569
EISBN: 978-1-62708-307-2
... Abstract Ceramic-matrix composites possess many of the desirable qualities of monolithic ceramics, but are much tougher because of the reinforcements. This chapter explains how reinforcements are used in ceramic-matrix composites and how they alter energy-dissipating mechanisms and load...
Abstract
Ceramic-matrix composites possess many of the desirable qualities of monolithic ceramics, but are much tougher because of the reinforcements. This chapter explains how reinforcements are used in ceramic-matrix composites and how they alter energy-dissipating mechanisms and load-carrying behaviors. It compares the stress-strain curves for monolithic ceramics and ceramic-matrix composites, noting improvements afforded by the addition of reinforcements. It then goes on to discuss the key attributes, properties, and applications of discontinuously reinforced ceramic composites, continuous fiber ceramic composites, and carbon-carbon composites. It also describes a number of ceramic-matrix composite processing methods, including cold pressing and sintering, hot pressing, reaction bonding, directed metal oxidation, and liquid, vapor, and polymer infiltration.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780417
EISBN: 978-1-62708-281-5
..., and impact loading on the surface of the laminate. Interlaminar Fracture of Composites with Brittle Thermoset Matrices Most of the fractographic evidence in interlaminar fractures that would be indicative of the material, processing, load, and/or environmental conditions at failure are found...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030023
EISBN: 978-1-62708-349-2
.... With the many options for epoxy casting resins, products with a higher hardness usually provide better results. A high hardness will correlate with most high-performance composite matrices and provide excellent edge retention. Room-temperature curing resins are often ideal; however, they frequently need...
Abstract
Specimen preparation is the first step that determines the quality of the microstructural information that can be obtained using optical microscopy. This chapter describes the sample preparation methods that are applicable to most types of composite materials containing short discontinuous or continuous fibers. The sample preparation methods cover documentation and labeling of samples, sectioning the composite, clamp-mounting composite samples, mounting composite samples in casting resins, and the addition of contrast dyes to casting resins. Information on the molds used for mounting composite materials is provided. The steps recommended to achieve a good mounted specimen without voids or specimen pull-out are also described. The chapter discusses the processes for clamping mounted composite samples in automated polishing heads and mounting composite materials for hand polishing. A summary of the mounting technique is also included.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870421
EISBN: 978-1-62708-314-0
... Abstract This chapter discusses some of the challenges associated with the analysis of composite structures. It begins with a review of lamina fundamentals and the stress-strain relationships in a single ply under various types of loads. It demonstrates the use of classical lamination theory...
Abstract
This chapter discusses some of the challenges associated with the analysis of composite structures. It begins with a review of lamina fundamentals and the stress-strain relationships in a single ply under various types of loads. It demonstrates the use of classical lamination theory, discusses the effects of interlaminar free-edge stresses, and explains how to predict the failure of composites using stress and strain criteria as well as the Azzi-Tsai-Hill maximum work theory and the Tsai-Wu failure criterion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060223
EISBN: 978-1-62708-343-0
... 0.3298 0.3622 0.4160 0.5278 (a) E = Young’s modulus in units of 10 6 × MPa; μ = Poisson’s ratio; α = coefficient of thermal expansion in units of 10 −5 °C −1 Effective orthotropic properties of the composite Table 9.2 Effective orthotropic properties of the composite Property...
Abstract
Fiber-reinforced metal-matrix composites have carved out a niche in applications requiring high strength to weight ratios, but they are susceptible to failure when exposed to high temperatures and cyclic loads. This chapter discusses the obstacles that must be overcome to improve the creep-fatigue behavior of these otherwise promising materials. It addresses six areas that have been the focus of intense research, including thermal-expansion and elastic-viscoplastic mismatch, thermally induced biaxiality and interply stresses, creep and cyclic relaxation of residual stresses, and enhanced interfaces for oxidation.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030043
EISBN: 978-1-62708-349-2
... to the sample that smearing will not be an issue. Smearing usually is caused by insufficient coolant, holding the sample in one direction, or applying excessive pressure. The formation of streaks in a composite material usually is found with matrices that have hard inclusions or porosity. The streaks are caused...
Abstract
Rough grinding and polishing of mounted specimens are required to prepare the composite sample for optical analysis. This chapter describes these techniques for preparing composite materials. First, it provides information on grinding and polishing equipment and describes the processes and process variables for sample preparation. Then, the chapter discusses the processes of abrasive sizing for grinding and rough polishing. Next, it provides a summary of grinding methods, rough polishing, and final polishing. Finally, information on common polishing artifacts that can result from any of the steps is provided.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730115
EISBN: 978-1-62708-283-9
... Abstract This chapter discusses the properties and uses of fiber-reinforced composites. It also describes the effect of volume fraction and fiber length. fiber length fiber-reinforced composites WITH COMPOSITE MATERIALS, combinations of properties can be achieved that could...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120131
EISBN: 978-1-62708-269-3
... matrices and metal matrices with some success, but have not particularly been explored for titanium matrix composites. The very high stiffness and strength of fibers that can be used in TMC means that a titanium composite could be almost twice as stiff as conventional titanium, actually exceeding...
Abstract
This chapter discusses some of the promising developments in the use of titanium, including titanium aluminides, titanium matrix composites, superplastic forming, spray forming, nanotechnology, and rapid solidification rate processing. It also reports on efforts to increase the operating temperature range of conventional titanium alloys and reduce costs.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870537
EISBN: 978-1-62708-314-0
... Abstract This chapter discusses the advantages and disadvantages of metal matrix composites and the methods used to produce them. It begins with a review of the composition and properties of aluminum matrix composites. It then describes discontinuous composite processing methods, including stir...
Abstract
This chapter discusses the advantages and disadvantages of metal matrix composites and the methods used to produce them. It begins with a review of the composition and properties of aluminum matrix composites. It then describes discontinuous composite processing methods, including stir and slurry casting, liquid metal infiltration, spray deposition, powder metallurgy, extrusion, hot rolling, and forging. The chapter also provides information on continuous-fiber aluminum and titanium composites as well as particle-reinforced titanium and fiber metal (glass aluminum) laminates.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030067
EISBN: 978-1-62708-349-2
... in the micrograph. Bright-field illumination, 25× objective Fig. 4.3 Effect of a diamond saw cut on a boron fiber composite. Cracking can be seen to extend over 100 μm into these large brittle fibers. Bright-field illumination, 25× objective Fig. 4.4 Schematic showing the mounting of boron...
Abstract
The most common methods for preparing polymeric composites for microscopic analysis can be used for most fiber-reinforced composite materials. There are, however, a few composite materials that require special preparation techniques. This chapter discusses the processes involved in the preparation of titanium honeycomb composites, boron fiber composites, titanium/polymeric composite hybrids, and uncured prepreg materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550385
EISBN: 978-1-62708-307-2
... Abstract Polymer-matrix composites are among the lightest structural materials in use today. They are also highly resistant to corrosion and fatigue and their load-carrying capabilities, such as strength and stiffness, can be tailored for specific applications. This chapter discusses...
Abstract
Polymer-matrix composites are among the lightest structural materials in use today. They are also highly resistant to corrosion and fatigue and their load-carrying capabilities, such as strength and stiffness, can be tailored for specific applications. This chapter discusses the primary advantages and disadvantages of polymer-matrix composites, how they are produced, and how they perform in different applications. It describes the construction of laminates, the fibers and resins used, and the methods by which they are combined. It explains how strength, modulus, toughness, and high-temperature and corrosion behaviors are determined by the orientation, shape, and spacing of fibers, the number of plies, resin properties, and consolidation and forming methods. The chapter also covers secondary fabrication processes, such as thermoforming, machining, and joining, as well as production equipment and product forms, and include guidelines for optimizing tradeoffs when selecting fibers, resins, and production techniques.
1