Skip Nav Destination
Close Modal
Search Results for
composite forms
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1151
Search Results for composite forms
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 November 2010
Image
Published: 01 November 2010
Image
Unidirectional alumina-fiber/glass-matrix composite formed by slurry infilt...
Available to PurchasePublished: 01 October 2012
Fig. 11.22 Unidirectional alumina-fiber/glass-matrix composite formed by slurry infiltration followed by hot pressing. (a) Light micrograph of transverse section (some porosity can be seen in this micrograph). (b) Pressure and temperature schedule used during hot pressing of this composite
More
Image
Various forms of fiber-reinforced composites. (a) Continuous fiber. (b) Wov...
Available to Purchase
in Special Materials: Polymers, Bone, Ceramics, and Composites
> Fatigue and Durability of Structural Materials
Published: 01 March 2006
Fig. 12.51 Various forms of fiber-reinforced composites. (a) Continuous fiber. (b) Woven fiber. (c) Chopped fiber. (d) Hybrid. Source: Ref 12.18
More
Image
Published: 01 November 2010
Image
Published: 01 November 2010
Image
Crystals formed in a high-temperature thermoplastic-matrix composite. Trans...
Available to Purchase
in Thin-Section Preparation and Transmitted-Light Microscopy
> Optical Microscopy of Fiber-Reinforced Composites
Published: 01 November 2010
Fig. 6.13 Crystals formed in a high-temperature thermoplastic-matrix composite. Transmitted polarized light, 40× objective
More
Image
Published: 01 October 2012
Image
Common forms of composites containing unidirectional high-strength/high-mod...
Available to PurchasePublished: 01 August 2005
Fig. 8.1 Common forms of composites containing unidirectional high-strength/high-modulus fibers embedded in a softer matrix. (a) Straight, continuous fibers. (b) Discontinuous or chopped fibers
More
Image
Published: 01 November 2007
Fig. 5.6 Compositions of the metallic components of M 7 C 3 and M 23 C 6 formed in Type 304L after carburizing at 1123 K (850 °C) in H 2 -2.6CH 4 ( a c = 0.9) for 150 h. Source: Ref 20
More
Image
Microstructure of TiC in a tool steel matrix. The composite is formed by li...
Available to PurchasePublished: 30 April 2020
Fig. 8.6 Microstructure of TiC in a tool steel matrix. The composite is formed by liquid-phase sintering mixed powders. The liquid phase is light, the dark phase is a carbide precipitate, and the connected structure is titanium carbide.
More
Book Chapter
Polymer-Matrix Composites
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550385
EISBN: 978-1-62708-307-2
... as production equipment and product forms, and include guidelines for optimizing tradeoffs when selecting fibers, resins, and production techniques. composite forms composite processing polymer-matrix composites reinforcement materials THE ADVANTAGES OF HIGH-PERFORMANCE COMPOSITES are many...
Abstract
Polymer-matrix composites are among the lightest structural materials in use today. They are also highly resistant to corrosion and fatigue and their load-carrying capabilities, such as strength and stiffness, can be tailored for specific applications. This chapter discusses the primary advantages and disadvantages of polymer-matrix composites, how they are produced, and how they perform in different applications. It describes the construction of laminates, the fibers and resins used, and the methods by which they are combined. It explains how strength, modulus, toughness, and high-temperature and corrosion behaviors are determined by the orientation, shape, and spacing of fibers, the number of plies, resin properties, and consolidation and forming methods. The chapter also covers secondary fabrication processes, such as thermoforming, machining, and joining, as well as production equipment and product forms, and include guidelines for optimizing tradeoffs when selecting fibers, resins, and production techniques.
Book Chapter
Corrosion of Aluminum Metal-Matrix Composites
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870179
EISBN: 978-1-62708-299-0
... Abstract This chapter discusses the ambient-temperature corrosion characteristics of aluminum metal-matrix composites (MMCs), including composites formed with boron, graphite, silicon carbide, aluminum oxide, and mica. It also discusses the effect of stress-corrosion cracking on graphite...
Abstract
This chapter discusses the ambient-temperature corrosion characteristics of aluminum metal-matrix composites (MMCs), including composites formed with boron, graphite, silicon carbide, aluminum oxide, and mica. It also discusses the effect of stress-corrosion cracking on graphite-aluminum composites and the use of protective coatings and design criteria for corrosion prevention.
Book Chapter
Metal-Matrix Composites
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550457
EISBN: 978-1-62708-307-2
..., aluminum oxide (Al 2 O 3 ), and refractory metals. Discontinuous reinforcements consist mainly of SiC in whisker (w) form, particulate (p) types of SiC, Al 2 O 3 , and titanium diboride (TiB 2 ), and short or chopped fibers (c) of Al 2 O 3 or graphite. A relative comparison of composite performance...
Abstract
Metal-matrix composites can operate at higher temperatures than their base metal counterparts and, unlike polymer-matrix composites, are nonflammable, do not outgas in a vacuum, and resist attack by solvents and fuels. They can also be tailored to provide greater strength and stiffness, among other properties, in preferred directions and locations. This chapter discusses the processes and procedures used in the production of fiber-reinforced aluminum and titanium metal-matrix composites. It explains how the length and orientation of reinforcing fibers affect the properties and processing characteristics of both aluminum and titanium composites. It also provides information on fiber-metal laminates and the use of different matrix metals and reinforcing materials.
Book Chapter
Introduction to Solidification and Phase Diagrams
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480031
EISBN: 978-1-62708-318-8
... to temperature T 1 , which is just slightly under the liquidus, solid crystals of composition a 1 form. Liquid at temperature T 1 has the composition b 1 . Thus, for this alloy at T 1 , under equilibrium conditions, two phases exist as a liquid of composition b 1 and a solid of composition...
Abstract
This chapter describes the structures, phases, and phase transformations observed in metals and alloys as they solidify and cool to lower temperatures. It begins with a review of the solidification process, covering nucleation, grain growth, and the factors that influence grain morphology. It then discusses the concept of solid solutions, the difference between substitutional and interstitial solid solubility, the effect of alloying elements, and the development of intermetallic phases. The chapter also covers the construction and use of binary and ternary phase diagrams and describes the helpful information they contain.
Book Chapter
Metal Matrix Composites
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870537
EISBN: 978-1-62708-314-0
... or monofilament fibers. Fig. 20.1 Metal matrix composite reinforcements. Source: Ref 1 Discontinuous reinforcements consist mainly of silicon carbide (SiC) in whisker (w) form; particulate (p) types of SiC, alumina (Al 2 O 3 ), and titanium diboride (TiB 2 ); and short or chopped fibers (c) of Al...
Abstract
This chapter discusses the advantages and disadvantages of metal matrix composites and the methods used to produce them. It begins with a review of the composition and properties of aluminum matrix composites. It then describes discontinuous composite processing methods, including stir and slurry casting, liquid metal infiltration, spray deposition, powder metallurgy, extrusion, hot rolling, and forging. The chapter also provides information on continuous-fiber aluminum and titanium composites as well as particle-reinforced titanium and fiber metal (glass aluminum) laminates.
Book Chapter
Thermoplastic Composite Fabrication Processes
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870183
EISBN: 978-1-62708-314-0
... methods are employed to consolidate thermoplastic composites. Flat sheet stock can be preconsolidated for subsequent forming in a platen press. Two press processes are shown in Fig. 6.2 . In the platen press method, precollated ply packs are preheated in an oven and then rapidly shuttled...
Abstract
This chapter discusses thermoplastic composite fabrication processes and related equipment and procedures. The discussion covers consolidation and thermoforming operations as well as joining methods.
Book Chapter
Introduction to Composite Materials
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870001
EISBN: 978-1-62708-314-0
... Abstract This chapter covers the basic aspects of composite materials. It describes the arrangement, form, and function of their constituent materials and explains how they perform better in combination than on their own. It discusses the directional nature of isotropic, anisotropic...
Abstract
This chapter covers the basic aspects of composite materials. It describes the arrangement, form, and function of their constituent materials and explains how they perform better in combination than on their own. It discusses the directional nature of isotropic, anisotropic, and orthotropic materials, the orientation of plies in unidirectional (lamina) and quasi-isotropic (laminate) lay-ups, and the dominant role of fibers in determining strength, stiffness, and other lamina properties. The chapter also compares the engineering attributes of composites with those of metals and includes application examples.
Book Chapter
Fatigue and Fracture of Continuous-Fiber Polymer-Matrix Composites
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610377
EISBN: 978-1-62708-303-4
... and stiffness but are brittle. The matrix, or continuous phase, performs several critical functions. It maintains the fibers in the proper orientation and spacing. It protects them from abrasion and the environment. In polymer-and metal-matrix composites that form a strong bond between the fiber and the matrix...
Abstract
Unlike metals, in which fatigue failures are due to a single crack that grows to a critical length, the effects of fatigue in composites are much more distributed and varied. As the chapter explains, there are five major damage mechanisms that contribute to the progression of composite fatigue, those being matrix cracking, fiber breaking, crack coupling, delamination initiation, and delamination growth. The chapter describes each mechanism in detail along with related factors. It also discusses the primary differences between composites and metals, the effect of manufacturing defects, damage tolerance, and testing and certification.
Book Chapter
Pearlite, Ferrite, and Cementite
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410039
EISBN: 978-1-62708-265-5
... the temperature-composition ranges over which these phases may exist. This chapter shows how various arrangements of phases or microstructures are produced by austenite transformation to ferrite and cementite. Alloy composition and the rate at which austenite is cooled profoundly affect which microstructure forms...
Abstract
The microstructure of carbon steel is largely determined by the transformation of austenite to ferrite, cementite, and pearlite. This chapter focuses on the microstructures produced by diffusion-controlled transformations that occur at relatively low cooling rates. It describes the conditions that promote such transformations and, in turn, how they affect the structure of various phases and the rate at which they form. The chapter also discusses the concepts of transformation kinetics, minimum free energy, and nucleation and growth, and provides information on alloying, interphase precipitation, and various types of transformations.
1