Skip Nav Destination
Close Modal
Search Results for
compatibility
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 285 Search Results for
compatibility
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860343
EISBN: 978-1-62708-348-5
...-O Al 1.40 93 93 a RA = reduction in area b Tested in 48.3 MPa (7000 psi) H 2 c Rockwell International Corporation Trademark; tested in 40 MPa (5800 psi) H 2 Figure 10.6 Relative compatibility of nonmetallic solids in static FLOX mixtures at ambient pressure; T = 78...
Abstract
This chapter discusses the compatibility problems that arise from chemical or physical interactions between liquefied gases and the common materials used in their production, storage, transportation, distribution, and use. The discussion covers the compatibility of materials with liquid oxygen and liquid fluorine. Hydrogen-environment embrittlement is unique to low-temperature hydrogen systems and is also discussed.
Image
Published: 01 June 1983
Figure 10.6 Relative compatibility of nonmetallic solids in static FLOX mixtures at ambient pressure; T = 78 K for liquid FLOX, T ≌ 270 K for gaseous FLOX ( Russell, Schmidt, and Gordon, 1966 ).
More
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780147
EISBN: 978-1-62708-268-6
... and verification, circuit performance, mechanical failures, materials compatibility, and environmental factors. Examples that illustrate the value of design analysis are also presented. defects design analysis failure analysis IN SOME CASES, the failure analysis team finds that all components meet...
Abstract
In some cases, the failure analysis team finds that all components meet their requirements, the system was properly assembled, and it was not operated or tested in an out-of-specification manner, yet it still failed. When this occurs, the only conclusion the failure analysis team can reach is that it missed something in its analysis or that the design is defective. This chapter focuses on the latter possibility by discussing the various factors that a failure analysis team should consider to identify the causes of defects in system design. These include requirements identification and verification, circuit performance, mechanical failures, materials compatibility, and environmental factors. Examples that illustrate the value of design analysis are also presented.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910301
EISBN: 978-1-62708-250-1
..., fluid movement, surface preparation and coating procedures, and compatibility, insulation, and stress considerations. Design solutions for specific forms of corrosion, namely crevice corrosion, galvanic corrosion, erosion-corrosion, and stress-corrosion cracking, are then considered. A brief section...
Abstract
The design process is the first and most important step in corrosion control. Major savings in operating costs are possible by anticipating corrosion problems so as to provide proper design for equipment before assembly or construction begins. This chapter describes the role of the design team in producing a successful final design, general considerations in corrosion-control design, and design details that accelerate corrosion. The details that must be considered when attempting to control corrosion by design include plant/site location, plant environment, component/assembly shape, fluid movement, surface preparation and coating procedures, and compatibility, insulation, and stress considerations. Design solutions for specific forms of corrosion, namely crevice corrosion, galvanic corrosion, erosion-corrosion, and stress-corrosion cracking, are then considered. A brief section is devoted to the discussion on corrosion allowance used for steel parts subject to uniform corrosion. Finally, the chapter describes the design considerations for using weathering steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550621
EISBN: 978-1-62708-307-2
... and their compatibility with specific materials. The chapter then presents general guidelines for selecting lightweight materials, and concludes with a review of lightweight metals, plastics, and composites used in automotive applications. automotive materials lightweight materials materials selection...
Abstract
This chapter consists of three parts. The first part provides data and guidelines for selecting materials and processing routes. It compares the basic properties of metals, ceramics, and polymers, identifies important measures of performance, and discusses manufacturing processes and their compatibility with specific materials. The chapter then presents general guidelines for selecting lightweight materials, and concludes with a review of lightweight metals, plastics, and composites used in automotive applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050139
EISBN: 978-1-62708-311-9
... Abstract This chapter discusses the quenching process and its adaptation to induction heat treating. It describes the three stages of quenching, the cooling characteristics of various types of quenchants, and the details of nearly a dozen compatible quenching methods. It also explains how...
Abstract
This chapter discusses the quenching process and its adaptation to induction heat treating. It describes the three stages of quenching, the cooling characteristics of various types of quenchants, and the details of nearly a dozen compatible quenching methods. It also explains how to verify whether a quenchant can cool a workpiece fast enough to achieve martensitic transformation without cracking or distortion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2021
DOI: 10.31399/asm.tb.ciktmse.t56020013
EISBN: 978-1-62708-389-8
... crystal structures, the ability to predict the movement of dislocations, the influence of impurities on defects, the relationship between gain size and material properties, the identification of specific types of defects, the selection of compatible metals for vacuum environments, and the effect...
Abstract
This chapter provides readers with worked solutions to more than 25 problems related to compositional impurities and structural defects. The problems deal with important issues and challenges such as the design of low-density steels, the causes and effects of distortion in different crystal structures, the ability to predict the movement of dislocations, the influence of impurities on defects, the relationship between gain size and material properties, the identification of specific types of defects, the selection of compatible metals for vacuum environments, and the effect of twinning planes on stacking sequences. The chapter also includes problems on how the formation of precipitates can produce slip planes and how grain boundaries can act as obstacles to dislocation motion.
Image
Published: 01 December 2004
Fig. 29 Typical CERT and SSRT results showing (a) material susceptibility to environmental degradation and (b) material compatibility with the environment
More
Image
Published: 01 December 2008
Fig. 8.10 Nucleation of silcon. (a), (b) Primary crystal Si of Al-Si system cannot nucleate spontaneously. (c) Primary crystal AIP nucleates spontaneously in Al-Si-P system. (d), (e) Because Si crystal and AIP crystal have a good compatibility, Si (the secondary nucleus) nucleates
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300163
EISBN: 978-1-62708-323-2
... at start-up and shutdown with low friction. Thus, copper alloys can have very compatible friction results in many applications. Its favorable friction sliding against hard steel is likely the result of its metallurgical dissimilarity with steel. Steel has a different crystal structure, a higher elastic...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550141
EISBN: 978-1-62708-307-2
Abstract
Magnesium, by volume, is two-thirds the weight of aluminum and one-quarter the weight of steel. It also has good damping capacity, giving it an edge over other metals in high-vibration environments. This chapter discusses the basic metallurgy, alloy designations, compositions, and mechanical properties of cast and wrought magnesium alloys. It also describes the processes used to produce magnesium parts, the causes and effects of corrosion, and the use of protective coatings and treatments.
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780131
EISBN: 978-1-62708-268-6
... surfaces may no longer seal. Valves can leak if they are exposed to temperatures, pressures, or pressure spikes outside their design limits. Valves can leak if internal materials are not compatible with the fluids flowing through the valve. Valves can experience internal corrosion...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 August 2023
DOI: 10.31399/asm.tb.mdsbktmse.t56070007
EISBN: 978-1-62708-451-2
... File This input script is compatible with the November 2016 version of LAMMPS. Updates in the software may require modification of some commands in the input script. The input file along with an explanation of each line is given in Table 2 . LAMMPS input code...
Abstract
The appendix contains detailed simulation examples through which readers learn how to format and analyze problems using the LAMMPS molecular dynamics simulator. By means of simulation, readers will determine the thermal expansion coefficient of copper, generate stress-strain plots for aluminum at different temperatures, calculate the surface energy of copper for different crystal orientations, investigate diffusion effects in BCC iron, estimate the sliding friction between graphene layers, compare the stacking fault energy of silver and aluminum, and analyze the properties and behaviors of liquids and gases. All examples employ a systematic problem-solving approach and include necessary input code.
Series: ASM Technical Books
Publisher: ASM International
Published: 31 August 2023
DOI: 10.31399/asm.tb.mdsbktmse.9781627084512
EISBN: 978-1-62708-451-2
Book Chapter
Book: Principles of Brazing
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230047
EISBN: 978-1-62708-351-5
Abstract
This chapter presents an overview of families of brazing alloys that one is likely to encounter in a manufacturing environment. It discusses the metallurgical aspects of brazing and includes a survey of brazing alloy systems. A discussion of deleterious and beneficial impurities is provided with examples. The chapter also describes the application of phase diagrams to brazing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030235
EISBN: 978-1-62708-282-2
... (if incorrect), welds, and fasteners can seriously influence stress, flow, and compatibility. Storage and transportation can significantly influence materials performance, especially for items shipped to/from tropical, humid climates where heavy rains, violent seas, storms, and cargo sweat may each...
Abstract
This chapter focuses on various factors to be considered at design stage to minimize corrosion. It begins by providing information on design considerations and general corrosion awareness. This is followed by a description of several factors influencing materials-component failure. Details on design and materials selection, which assist in controlling corrosion, are then provided. The chapter ends with a discussion on the design factors that influence corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030223
EISBN: 978-1-62708-349-2
... failure mechanisms, especially if the prepreg/film adhesive compatibility and bond strength are not adequate. Figure 13.10 shows areas of a honeycomb sandwich structure composite where the film adhesive fillet separated from the prepreg composite. In this material, failure was also found at the adhesive...
Abstract
The honeycomb sandwich structure composite is a very efficient and complex structure widely used in the aircraft industry. Honeycomb-cored sandwich panels increase part stiffness at a lower weight than monolithic composite materials. This chapter describes the analysis of the intermingling of the film adhesive/prepreg resin system. It discusses the causes and effects of honeycomb core movement, which results in core crush. The chapter also explains the formation of a void in honeycomb composites and the failure mechanisms in honeycomb sandwich structure composites.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400089
EISBN: 978-1-62708-316-4
... of additives Corrosion control Cleanliness and removal methods Compatibility with prelubricants and preapplied oils Post-metal forming operations (e.g., welding and adhesive joining) Environmental safety and recycling Types of Lubricants <xref rid="t53400089-ref8" ref-type="bibr">(Ref 7.8...
Abstract
This chapter discusses the factors that must be considered when selecting a lubricant for sheet metal forming operations. It begins with a review of lubrication regimes and friction models. It then describes the selection and use of sheet metal forming lubricants, explaining how they are applied and removed and how their pressure and temperature ranges can be extended by performance enhancing additives. The chapter also explains how sheet metal forming lubricants are evaluated in the laboratory as well as on the production floor and how tribological tests are conducted to simulate stamping, deep drawing, ironing, and blanking operations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910331
EISBN: 978-1-62708-250-1
... performance of a given material are listed in Table 2 . Checklist for materials selection Table 1 Checklist for materials selection Requirements to be met Properties (corrosion, mechanical, physical, appearance) Fabrication (ability to be formed, welded, machined, etc.) Compatibility...
Abstract
The challenge of materials selection is to achieve adequate performance at the lowest possible cost. Corrosion resistance is not the only property to be considered in making materials selections. Typical requirements and some of the procedures involved in making a selection and some of the factors that must be considered when determining the corrosion performance of a given material are listed in this chapter. The various steps that might be included in a materials selection process are then examined. These include a review of operating conditions and design, the selection of candidate materials, the in-depth evaluation of each candidate material, fabrication requirements, follow-up monitoring, and final materials selection. Material considerations such as cost, materials properties, and processing and fabrication requirements are subsequently covered. Finally, the chapter provides information on materials selection under general corrosion conditions and under conditions of localized corrosion forms such as pitting, crevice corrosion, and stress-corrosion cracking.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780329
EISBN: 978-1-62708-281-5
... photochemistry. In addition to its light-absorbing capability, the performance of an ultraviolet absorber depends on its compatibility with the polymer matrix and its long-term permanence. If the ultraviolet absorber is incompatible with the polymer, it will tend to bloom out of the polymer and be ineffective...
Abstract
This article provides a basic review of polymer photochemistry as it relates to the weatherability of engineering plastics, considering the chemistry induced by exposure to sunlight in open air. Elementary aspects of weatherability chemistry that are discussed include the light wavelengths responsible for polymer photochemistry, problems with artificial light sources, general photooxidation and specific photochemical reactions important in plastics, and the factors influencing the rate of degradation. The approaches used to stabilize plastics against photochemical damage, including ultraviolet light absorbers, oxidation inhibitors, and the use of protective coatings, are also considered.
1