Skip Nav Destination
Close Modal
Search Results for
cold working
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 974 Search Results for
cold working
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220403
EISBN: 978-1-62708-259-4
... Abstract With cold work, mechanical strength (measured either by yield strength or ultimate tensile strength) increases and ductility (measured by elongation, reduction of area, or fracture toughness) normally decreases. This chapter discusses the mechanisms that produce these changes...
Abstract
With cold work, mechanical strength (measured either by yield strength or ultimate tensile strength) increases and ductility (measured by elongation, reduction of area, or fracture toughness) normally decreases. This chapter discusses the mechanisms that produce these changes and the factors that influence them. It explains how cold working increases dislocation density and how that affects the stress-strain characteristics of steel, particularly the onset of deformation. It describes the effects of deformation on ferrite, austenite, cementite, and pearlite, and how to optimize their microstructure for various applications through controlled deformation. It also provides information on subcritical annealing, the examination and control of texture, the use of optical microscopy to monitor the effects of recrystallization, and the effect of cold working on threaded fasteners, nails, and filaments used to manufacture cords.
Image
Published: 01 October 2011
Image
Published: 01 June 2008
Image
Published: 01 June 2008
Image
Published: 01 June 2008
Fig. 14.28 Split-sleeve cold working process. Reprinted with permission from SAE Paper # 982145 © 1998 SAE International. Source: Ref 14
More
Image
Published: 01 November 2011
Image
in Annealing, Normalizing, Martempering, and Austempering
> Principles of the Heat Treatment of Plain Carbon and Low Alloy Steels
Published: 01 December 1996
Fig. 7-3 (Part 1) Microstructural changes associated with cold working a Cu-5% Zn alloy. (From same source as Fig. 7-1 )
More
Image
in Annealing, Normalizing, Martempering, and Austempering
> Principles of the Heat Treatment of Plain Carbon and Low Alloy Steels
Published: 01 December 1996
Fig. 7-3 (Part 2) Microstructural changes associated with cold working a Cu-5% Zn alloy. (From same source as Fig. 7-1 )
More
Image
Published: 01 September 2008
Fig. 7 Tempering curves for most common tool steels used in cold working. Tempering curves are obtained after hardening small (25 mm or 1 in.) specimens of all materials with the usual hardening temperature: 920 °C for S1, 800 °C for O1, 940 °C for D6 (similar to D3), 1010 °C for D2, and 1030
More
Image
Published: 01 August 2018
Fig. 11.35 ASTM A681–D2, tool steel for cold working. Annealed to 250 HB. Carbides in a ferritic matrix. (a) Conventional ingot, 830 mm (33 in.) diameter subjected to forging reduction via hot working of 5.6:1 (measured as the ratio of cross sections before and after work). (b) An ingot
More
Image
in Mechanical Work of Steels—Cold Working
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Fig. 12.10 Cold working polycrystalline materials will generate anisotropy of the grain shape: their elongation in the deformation direction is evident. Anisotropy increases with cold work. For small deformations (< approx. 10%), this anisotropy may not be observable in the metallographic
More
Image
in Mechanical Work of Steels—Cold Working
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Fig. 12.11 Low carbon steel sheet C = 0.06%, Mn = 0.55%, after cold working, in the work hardened state, prior to annealing. Very elongated grains of ferrite and cementite. Hardness: 95 HRB.
More
Image
in Metallic Joints: Mechanically Fastened and Welded
> Fatigue and Fracture: Understanding the Basics
Published: 01 November 2012
Image
in Metallic Joints: Mechanically Fastened and Welded
> Fatigue and Fracture: Understanding the Basics
Published: 01 November 2012
Image
in Deformation and Recrystallization of Titanium and Its Alloys[1]
> Titanium: Physical Metallurgy, Processing, and Applications
Published: 01 January 2015
Fig. 5.17 Recovery, recrystallization, and grain growth occur after cold working operations such as cold rolling followed by annealing.
More
Image
Published: 01 December 2001
Fig. 11 Effect of cold work and Mg addition on alloy 2419. (a) The effect of cold work on the yield strength response to aging at 149 °C (300 °F) for the alloy with 0.18 at.% Mg. (b) The effect of cold work on the yield strength response to aging at 149 °C (300 °F) for the alloy without Mg.
More
Image
in Alteration of Microstructure
> Metallographer’s Guide: Practices and Procedures for Irons and Steels
Published: 01 March 2002
Fig. 3.11 Microstructure of a cold-rolled, low-carbon steel sheet. Cold-worked (a) 30%, (b) 50%, (c) 70%, and (d) 90%. Marshall’s etch. 500×
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900181
EISBN: 978-1-62708-358-4
... Abstract The oil-hardening cold-work tool steels, designated as group O steels in the AISI classification system, derive their high hardness and wear resistance from high carbon and modest alloy contents. This chapter describes the microstructures and hardenability of oil-hardening tool steels...
Abstract
The oil-hardening cold-work tool steels, designated as group O steels in the AISI classification system, derive their high hardness and wear resistance from high carbon and modest alloy contents. This chapter describes the microstructures and hardenability of oil-hardening tool steels and discusses the processes involved in the hardening and tempering of tool steels. It also covers the selection criteria and applications of oil-hardening cold-work tool steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900193
EISBN: 978-1-62708-358-4
... Abstract The air-hardening cold-work tool steels, designated as group A steels in the AISI classification system, achieve their processing and performance characteristics with combinations of high carbon and moderately high alloy content. This chapter describes the microstructural features...
Abstract
The air-hardening cold-work tool steels, designated as group A steels in the AISI classification system, achieve their processing and performance characteristics with combinations of high carbon and moderately high alloy content. This chapter describes the microstructural features and hardenability of air-hardening cold-work tool steels and discusses the processes involved in the hardening and tempering of tool steels.
Image
Published: 01 March 2006
Fig. 3 Depth of decarburization of a cold-worked steel in a fluidized bed in air. Source: Ref 1
More
1