Skip Nav Destination
Close Modal
Search Results for
cold cracking
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 674 Search Results for
cold cracking
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2006
Fig. 9 Causes and cures of hydrogen-induced cold cracking in weld metal. Thermal severity number (TSN), which is four times the total plate thickness capable of removing heat from the joint, is thus a measure of the member’s ability to serve as a heat sink.
More
Image
Published: 01 December 2006
Image
Published: 01 December 2006
Fig. 15 Underbead crack, the result of hydrogen-induced cold cracking, in the HAZ of a shielded-metal arc weld in AISI 1045 steel. Etched with 2% nital. 30×
More
Image
in Stress-Corrosion Cracking of Stainless Steels[1]
> Stress-Corrosion Cracking<subtitle>Materials Performance and Evaluation</subtitle>
Published: 01 January 2017
Fig. 4.10 Effect of cold work on the cracking time of a low-phosphorus (0.003% P) 18Cr-10Ni stainless steel and types 304 and 316 in magnesium chloride solutions boiling at 154 °C (309 °F) under an applied tensile stress of 196 MPa (28 ksi). After Ref 4.39
More
Image
in Failure Analysis of Stress-Corrosion Cracking[1]
> Stress-Corrosion Cracking<subtitle>Materials Performance and Evaluation</subtitle>
Published: 01 January 2017
Fig. 18.21 Stress-corrosion cracking in cold-formed brass fuse caps. (a) Numerous longitudinal cracks are visible in the brass caps. (b) Unetched metallographic section showing the primary crack opening with limited branching. Original magnification: 50×. (c) Etched metallographic section
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930071
EISBN: 978-1-62708-359-1
.... Colloquially, these four defect types are known as hot cracks, heat-affected zone microfissures, cold cracks, and lamellar tearing. cold cracks fusion welding heat-affected zone hot cracks lamellar tearing welded assemblies THE FORMATION OF DEFECTS in materials that have been fusion welded...
Abstract
The formation of defects in materials that have been fusion welded is a major concern in the design of welded assemblies. This article describes four types of defects that, in particular, have been the focus of much attention because of the magnitude of their impact on product quality. Colloquially, these four defect types are known as hot cracks, heat-affected zone microfissures, cold cracks, and lamellar tearing.
Image
Published: 01 December 2006
Fig. 17 Graville diagram showing susceptibility of steels to hydrogen-induced cold cracking relative to carbon content and carbon equivalent (CE), where CE = %C + (%Mn + %Si)/6 (%Ni + %Cu)/15 + (%Cr + %Mo + %V)/5. Susceptibility to cold cracking progressively increases as steels migrate from
More
Image
Published: 01 July 1997
Fig. 30 Graville diagram showing susceptibility of steels to hydrogen-induced cold cracking relative to carbon content and carbon equivalent (CE), where CE = %C + (%Mn + %Si)/6 (%Ni + %Cu)/15 + (%Cr + %Mo + %V)/5. Susceptibility to cold cracking progressively increases as steels migrate from
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930023
EISBN: 978-1-62708-359-1
... of the base materials (and any added filler material) to cracking. The purpose of these tests is to reduce or to eliminate the formation of these defects during fabrication or service. Cracking can be in the form of hot cracking, cold cracking, or lamellar tearing. Detailed information about these defects...
Abstract
This article describes the weldability tests that are used to evaluate the effects of welding on such properties and characteristics as base-metal and weld-metal cracking; base-metal and weld-metal ductility; weld penetration; and weld pool shape and fluid flow. It also describes several weldability tests for evaluating cracking susceptibility, classified as self-restraint or externally loaded tests. The article discusses the processes, advantages, and disadvantages of the weld pool shape tests, the weld penetration tests, and the Gleeble test.
Image
Published: 01 November 2012
Fig. 10 Cracked cementite particle in a cold rolled low-carbon steel (approximately 0.1% C). High-magnification view of a cracked cementite particle showing multiple cracks and shattering. Courtesy of R. Holman, University of Tennessee. Source: Ref 3
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930003
EISBN: 978-1-62708-359-1
... additional benefits, such as greatly decreased susceptibility to hydrogen-assisted cold cracking and reduced residual stresses and distortion. Welding Flaws Porosity Porosity, or fine holes or pores within the weld metal, can occur by absorption of evolved gases and chemical reaction. Metals...
Abstract
It is well established that solidification behavior in the fusion zone controls the size and shape of grains, the extent of segregation, and the distribution of inclusions and defects such as porosity and hot cracks. Since the properties and integrity of the weld metal depend on the solidification behavior and the resulting microstructural characteristics, understanding weld pool solidification behavior is essential. This article provides a general introduction of key welding variables including solidification of the weld metal or fusion zone and microstructure of the weld and heat-affected zone. It discusses the effects of welding on microstructure and the causes and remedies of common welding flaws.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820001
EISBN: 978-1-62708-339-3
..., significantly altering the susceptibility of the solidified microstructure to SCC ( Ref 29 ). Hydrogen-Induced Cold Cracking Cold cracking is the term used for cracks that occur after the weld has solidified and cooled; it occurs in either the HAZ or the weld metal of low-alloy and other hardenable...
Abstract
Corrosion failures of welds can occur even when the proper base metal and filler metal have been selected, industry codes and standards have been followed, and welds have been deposited that possess full weld penetration and have proper shape and contour. This chapter describes some of the general characteristics associated with the corrosion of weldments. The role of macro- and microcompositional variations, a feature common to weldments, is emphasized in this chapter to bring out differences that need to be realized in comparing the corrosion of weldments to that of wrought materials. The discussion covers the factors influencing corrosion of weldments, microstructural features of weld microstructures, various forms of weld corrosion, and welding practice to minimize corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930197
EISBN: 978-1-62708-359-1
... joint Excessive bead convexity and bead reinforcement Excessive bead concavity and undersized welds Sharp undercut and overlap at the weld toe Cracks—hot or cold, longitudinal or transverse, crater and at weld toe Gas porosity Incomplete fusion Arc strike Spatter Subsurface...
Abstract
Weldment failures may be divided into two classes: those identified during inspection and mechanical testing and those discovered in service. Failures in service arise from fracture, wear, corrosion, or deformation. In this article, major attention is directed toward the analysis of service failures. The discussion covers various factors that may lead to the failure of arc welds, electroslag welds, electrogas welds, resistance welds, flash welds, upset butt welds, friction welds, electron beam welds, and laser beam welds.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930249
EISBN: 978-1-62708-359-1
... in austenitic weld metals, although it can occur in all types of stainless steel weldments. Cracking can also occur at rather low temperatures, typically 150 °C (300 °F) or below, because of the interaction of high weld stresses, high-strength metal, and diffusible hydrogen. This cold cracking commonly...
Abstract
Stainless steel base metals and the welding filler metals used with them are chosen on the basis of suitable corrosion resistance for the intended application. This article describes several constitution diagrams that that have been developed to predict microstructures and properties. This is followed by discussions of weldability, cracking, and the engineering properties of stainless steel welds, namely martensitic stainless steels, ferritic stainless steel welds, austenitic stainless steels, and duplex stainless steels.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820115
EISBN: 978-1-62708-339-3
... in covered form. These compositions, as well as AWS ER420, are available in solid wires. Corrosion Behavior Hydrogen-Induced Cracking Weld-area cracking in martensitic stainless steels is primarily due to the presence of hydrogen in the hardened structure ( Ref 1 ). Hydrogen-induced cold cracks...
Abstract
Martensitic stainless steels are essentially iron-chromium-carbon alloys that possess a body-centered tetragonal crystal structure (martensitic) in the hardened condition. Martensitic stainless steels are similar to plain carbon or low-alloy steels that are austenitized, hardened by quenching, and then tempered for increased ductility and toughness. This chapter provides a basic understanding of grade designations, properties, corrosion resistance, and general welding considerations of martensitic stainless steels. It also discusses the causes for hydrogen-induced cracking in martensitic stainless steels and describes sulfide stress corrosion resistance of type 410 weldments.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930217
EISBN: 978-1-62708-359-1
... ) ( Si 24 + Mn 6 + Cu 15 + Ni 20 + Cr + Mo + Nb + V 5 + 5 B ) where A(C) = 0.75 + 0.25 tan/ h [20(C - 0.12)]. These carbon equivalence expressions were initially developed to characterize the hydrogen-induced cracking tendency...
Abstract
This article reviews the fundamental and specific factors that control the properties of steel weldments in both the weld metal and heat-affected zone (HAZ). The influence of welding processes, welding consumables, and welding parameters on the weldment properties is emphasized. The service properties of weldments in corrosive environments are considered and subjected to cyclic loading. The article summarizes the effects of major alloying elements in carbon and low-alloy steels on HAZ microstructure and toughness. It discusses the processes involved in controlling toughness in the HAZ and the selection of the proper filler metal. The article provides a comparison between single-pass and multipass welding and describes the effect of welding procedures on weldment properties and the effects of residual stresses on the service behavior of welded structures. It also describes the fatigue strength and fracture toughness of welded structures. The article reviews various types of corrosion of weldments.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130001
EISBN: 978-1-62708-284-6
... shock, due to a sudden immersion in a cold medium, without cracking depends on its thermal expansion coefficient, α; tensile strength, σ t , for metals; Young’s modulus, E ; thermal conductivity, λ; and heat-transfer coefficient, h . A temperature change of Δ T applied to a constrained body...
Abstract
A systematic procedure for minimizing risks involved in heat treated steel components requires a combination of metallurgical failure analysis and fitness for service with respect to safety and reliability based on risk analysis. This chapter begins with an overview of heat treat processing of steels. This is followed by sections on various aspects of heat treatment design and heat treating practices for minimizing distortion. Influence of design, steel grade, and condition is then illustrated in the examples of failures due to heat treatment. A procedure is analyzed to improve the performance of the design process of a component. A heat-transfer model, coupling with a phase transformation model, a thermomechanical model, and a thermochemical model, is also considered. The chapter further provides information on the failure aspects of and heat treatment procedures applied to welded components. It ends with a section on risk-based approach applicable to heat treated steel components.
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820013
EISBN: 978-1-62708-339-3
.... It describes the issues related to corrosion of carbon steel weldments and remedial measures that have proven successful in specific cases. The major forms of environmentally assisted cracking affecting weldment corrosion are covered. The chapter concludes with a discussion of the effects of welding practice...
Abstract
Carbon and low-alloy steels are the most frequently welded metallic materials, and much of the welding metallurgy research has focused on this class of materials. Key metallurgical factors of interest include an understanding of the solidification of welds, microstructure of the weld and heat-affected zone (HAZ), solid-state phase transformations during welding, control of toughness in the HAZ, the effects of preheating and postweld heat treatment, and weld discontinuities. This chapter provides information on the classification of steels and the welding characteristics of each class. It describes the issues related to corrosion of carbon steel weldments and remedial measures that have proven successful in specific cases. The major forms of environmentally assisted cracking affecting weldment corrosion are covered. The chapter concludes with a discussion of the effects of welding practice on weldment corrosion.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130311
EISBN: 978-1-62708-284-6
.... Toughness, which is related to crack end-life situations, is also very important in hot work tooling. Toughness requirements are so important that hot work tool steels normally have carbon contents close to 0.40% and hardness below 52 HRC, both values much lower than that of cold work grades. Plastic Mold...
Abstract
This chapter focuses on the failure aspects of tool steels. The discussion covers the classification, chemical composition, main characteristics, and several failures of tool steels and their relation to heat treatment. The tool steels covered are hot work, cold work, plastic mold, and high-speed tool steels.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090221
EISBN: 978-1-62708-266-2
..., microstructure, heat treatment, cold working, and stress intensity. It also provides information on stress-corrosion testing, mitigation techniques, and basic cracking mechanisms. cold working copper alloys stress-corrosion cracking stress-corrosion test THE PHENOMENON of stress-corrosion cracking...
Abstract
This chapter describes the conditions under which copper-base alloys are susceptible to stress-corrosion cracking (SCC) and some of the environmental factors, such as temperature, pH, and corrosion potential, that influence crack growth and time to failure. It explains that, although most of the literature has been concerned with copper zinc alloys in ammoniacal solutions, there are a number of alloy-environment combinations where SCC has been observed. The chapter discusses several of these cases and the effect of various application parameters, including composition, microstructure, heat treatment, cold working, and stress intensity. It also provides information on stress-corrosion testing, mitigation techniques, and basic cracking mechanisms.
1