Skip Nav Destination
Close Modal
Search Results for
cobalt alloy castings
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 319
Search Results for cobalt alloy castings
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Overview of Superalloys
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.sap.t53000009
EISBN: 978-1-62708-313-3
... Cobalt-base alloys are used for applications where hot corrosion is a major concern or for low-stress structural applications at moderate-to-high temperatures. Cast alloys are typified by X-40 and MAR-M 302, while Haynes 25 (L-605), Haynes 188, and S-816 are representative of wrought alloys. (Haynes 25...
Abstract
This chapter provides a brief overview of nickel-iron-base, cobalt-base, and nickel-base superalloys, discussing their basic metallurgy and defining characteristics.
Book Chapter
Magnetic Alloys
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170614
EISBN: 978-1-62708-297-6
... such large amounts of cobalt make it possible to develop a preferred orientation by heat treating the material in a magnetic field. Less striking improvements in H c and B r are obtained in nonoriented samples. Compositions and properties of both cast and P/M Alnico alloys are listed in Tables 4...
Abstract
This article discusses the compositions, structures, and properties of the most common grades of soft magnetic metals and permanent magnet alloys. It explains how alloying additions and impurities affect the magnetic properties of these materials, which include commercially pure and phosphorus irons, low-carbon and silicon steels, ferritic stainless steels, and nickel-iron and iron-cobalt alloys.
Book Chapter
Cobalt and Cobalt Alloys
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170540
EISBN: 978-1-62708-297-6
... vanes and buckets. The harder grades are used for resistance to wear. Compositions of various cobalt-base alloys Table 3 Compositions of various cobalt-base alloys Alloy tradename UNS No. Nominal composition, wt% Co Cr W Mo C Fe Ni Si Mn Others Cast, P/M, and weld overlay...
Abstract
This article discusses the properties, behaviors, and uses of cobalt and its alloys. It explains how cobalt alloys are categorized and describes the commercial designations and grades that are available. It also provides composition information and explains how alloying elements and carbides affect toughness, hardness, ductility, and strength as well as resistance to heat, corrosion, and wear.
Book Chapter
Investment Casting
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280079
EISBN: 978-1-62708-267-9
... patterns, molds, and shells are produced, discusses the practice of directional solidification, and examines an assortment of turbine components cast from nickel- and cobalt-base alloys. The chapter also addresses casting problems such as inclusions, porosity, distortion, core shift, and leaching...
Abstract
This chapter discusses the application of investment casting to nickel- and cobalt-base superalloys. It describes the production of polycrystalline and single crystal castings, the materials normally used, and the part dimensions and tolerances typically achieved. It explains how patterns, molds, and shells are produced, discusses the practice of directional solidification, and examines an assortment of turbine components cast from nickel- and cobalt-base alloys. The chapter also addresses casting problems such as inclusions, porosity, distortion, core shift, and leaching and explains how to avoid them.
Image
Typical operating microstructures of representative superalloys. (a) Cast c...
Available to PurchasePublished: 01 March 2002
Fig. 3.4 Typical operating microstructures of representative superalloys. (a) Cast cobalt-base alloy. 250×. (b) Cast nickel-base alloy. 100×. (c) Wrought (left, 3300×) and cast (right, 5000×) nickel-base alloys. (d) Two wrought iron-nickel-base alloys (left, 17,000×); IN-718 (right, 3300
More
Book Chapter
Superalloys
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240563
EISBN: 978-1-62708-251-8
... Abstract Superalloys are nickel, iron-nickel, and cobalt-base alloys designed for high-temperature applications, generally above 540 deg C. This chapter covers the metallurgy, composition, and properties of cast and wrought superalloys. It provides information on melting, heat treating...
Abstract
Superalloys are nickel, iron-nickel, and cobalt-base alloys designed for high-temperature applications, generally above 540 deg C. This chapter covers the metallurgy, composition, and properties of cast and wrought superalloys. It provides information on melting, heat treating, and secondary fabrication processes. It also covers coating technology, including aluminide diffusion and overlay coatings, and addresses the advantages and disadvantages of superalloys in various applications.
Book Chapter
Structure/Property Relationships
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280211
EISBN: 978-1-62708-267-9
...-base alloys, although detrimental effects of carbide films have been reported. Cobalt-Base Alloys Studies of specific effects of grain-boundary carbides in cobalt-base alloys are even more sparse. The carbide distribution in cobalt-base alloys arises from the original casting or upon cooling...
Abstract
This chapter examines the effect of heat treating and other processes on the microstructure-property relationships that occur in superalloys. It discusses precipitation and grain-boundary hardening and how they influence the phases, structures, and properties of various alloys. It explains how the delta phase, which is used to control grain size in IN-718, improves strength and prevents stress-rupture embrittlement. It describes heat treatments for different product forms, discusses the effect of tramp elements on grain-boundary ductility, and explains how section size and test location influence measured properties. It also provides information and data on the physical and mechanical properties of superalloys, particularly tensile strength, creep-rupture, fatigue, and fracture, and discusses related factors such as directionality, porosity, orientation, elongation, and the effect of coating and welding processes.
Book Chapter
Understanding Superalloy Metallurgy
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280025
EISBN: 978-1-62708-267-9
... discussion of investment casting in Chapter 5 ). Wrought powder metallurgy alloys of the ODS class and cast alloys such as MAR-M-247 have demonstrated property improvements, owing to control of grain morphology by directional recrystallization or directional solidification. Cobalt-Base Superalloys...
Abstract
This chapter describes the metallurgy of superalloys and the extent to which it can be controlled. It discusses the alloying elements, crystal structures, and processing sequences associated with more than a dozen phases that largely determine the characteristics of superalloys, including their properties, behaviors, and microstructure. It examines the role of more than 20 alloying elements, including phosphorus (promotes carbide precipitation), boron (improves creep properties), lanthanum (increases hot corrosion resistance), and carbon and tungsten which serve as matrix stabilizers. It explains how precipitates provide strength by impeding deformation under load. It also discusses the factors that influence grain size, shape, and orientation and how they can be controlled to optimize mechanical and physical properties.
Book Chapter
Maraging Steels
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170234
EISBN: 978-1-62708-297-6
... Standard grades 18Ni(200) 18 3.3 8.5 0.2 0.1 … 18Ni(250) 18 5.0 8.5 0.4 0.1 … Low-cobalt 18Ni(250) 18.5 2.6 2.0 1.2 0.1 0.1 18Ni(300) 18 5.0 9.0 0.7 0.1 … 18Ni(350) 18 4.2 (b) 12.5 1.6 0.1 … 18Ni(Cast) 17 4.6 10.0 0.3 0.1 … 12-5-3(180) (c) 12 3...
Abstract
This article discusses the effects of alloying on the properties and behaviors of maraging steels. It describes how maraging steels differ from conventional steels in that they are strengthened, not by carbon, but by the precipitation of intermetallic compounds. It explains how maraging steels typically have high levels of nickel, cobalt, and molybdenum with little carbon content and how that affects their dimensional stability, fracture toughness, weldability, and resistance to stress-corrosion cracking.
Book Chapter
Nickel and Cobalt
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240547
EISBN: 978-1-62708-251-8
..., and, in the case of the cast and hardfacing materials, by chemical segregation in the microstructure. As a result of their homogeneous microstructures and lower carbon contents, the wrought cobalt-base high-temperature alloys, which typically contain tungsten rather than molybdenum, are even more resistant...
Abstract
Nickel and nickel alloys have an excellent combination of corrosion, oxidation, and heat resistance, combined with good mechanical properties. Nickel alloys can be divided into alloys that combine corrosion and heat resistance, superalloys for high-temperature applications, and special nickel alloys. Corrosion- and heat-resistant nickel alloys include commercially pure and low-alloy nickels, nickel-copper alloys, nickel-molybdenum and nickel-silicon alloys, nickel-chromium-iron alloys, nickel-chromium-molybdenum alloys, and nickel-chromium-iron-molybdenum-copper alloys. Special nickel alloys include electrical-resistance alloys, low-expansion alloys, magnetically soft alloys, and shape memory alloys. This chapter discusses the metallurgy, nominal composition, properties, applications, advantages, and disadvantages of these alloys. It also provides information on cobalt wear-resistant alloys and cobalt corrosion-resistant alloys.
Book Chapter
Superalloys
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170290
EISBN: 978-1-62708-297-6
... with consecutive positions in the periodic table of elements. The iron-nickel-base superalloys are an extension of stainless steel technology and generally are wrought, whereas cobalt- and nickel-base superalloys may be wrought or cast, depending on the application/composition involved. The more highly alloyed...
Abstract
This article discusses the composition, structure, and properties of iron-nickel-, nickel-, and cobalt-base superalloys and the effect of major alloying and trace elements. It describes the primary and secondary roles of each alloying element, the amounts typically used, and the corresponding effect on properties and microstructure. It also covers mechanical alloying and weldability and includes nominal composition data on many wrought and cast superalloys.
Book Chapter
Machining
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280189
EISBN: 978-1-62708-267-9
..., but nevertheless they are more apt to react with iron-nickel- and cobalt-base workpieces. Consequently, SiAlON and SiC whisker-reinforced Al 2 O 3 are most effective when cutting wrought nickel-base alloys. The cast nickel-base alloys, because of their grain structure, chip even the tougher ceramics. Coated...
Abstract
The qualities that make superalloys excellent engineering materials also make them difficult to machine. This chapter discusses the challenges involved in machining superalloys and the factors that determine machinability. It addresses material removal rates, cutting tool materials, tool life, and practical issues such as set up time, tool changes, and production scheduling. It describes several machining processes, including turning, boring, planing, trepanning, shaping, broaching, drilling, tapping, thread milling, and grinding. It also provides information on toolholders, fixturing, cutting and grinding fluids, and tooling modifications.
Book Chapter
Selection of Superalloys
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280011
EISBN: 978-1-62708-267-9
... alloys are called out in design. Because of a melting-point advantage, the PC cast cobalt-base superalloys are usually stronger than the nickel-base superalloys at temperatures above 2000 °F (1093 °C). This is not an absolute fact, because SCDS cast nickel-base alloys are capable of operation above...
Abstract
This chapter provides basic materials selection information for iron-nickel-, nickel-, and cobalt-base superalloys. It discusses mechanical and physical properties, the effect of service temperature, and the comparative strengths of wrought and cast product forms. It includes several large data tables along with reference information and a detailed application example based on the design of a gas turbine disk.
Book Chapter
Nonferrous Metals—A Variety of Possibilities
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060315
EISBN: 978-1-62708-261-7
... are not strengthened by coherent, ordered precipitates. Rather, they are characterized by a solid-solution-strengthened austenitic (fcc) matrix in which a small quantity of carbide is distributed. Cast cobalt alloys rely on carbide strengthening to a much greater extent. Cobalt-base alloys are often designed...
Abstract
Nonferrous metals are of commercial interest both as engineering materials and as alloying agents. This chapter addresses both roles, discussing the properties, processing characteristics, and applications of several categories of nonferrous metals, including light metals, corrosion-resistance alloys, superalloys, refractory metals, low-melting-point metals, reactive metals, precious metals, rare earth metals, and metalloids or semimetals. It also provides a brief summary on special-purpose materials, including uranium, vanadium, magnetic alloys, and thermocouple materials.
Book Chapter
Reference Tables
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060273
EISBN: 978-1-62708-355-3
... 40 Copper casting alloys( a ) 965 140 62 9 Stainless steels, standard austenitic grades; wrought, cold worked 965 140 517 75 Niobium and its alloys 931 135 241 35 Iron-base superalloys; cast, wrought 924 134 276 40 Cobalt-base superalloys, wrought 800 116 241 35...
Abstract
This chapter contains tables listing room-temperature tensile yield strength comparisons of metals and plastics and room-temperature tensile modulus of elasticity comparisons of various materials.
Book Chapter
Superalloys for High Temperatures—a Primer
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280001
EISBN: 978-1-62708-267-9
... of the alloy but also to melting procedures, forging and working processes, casting techniques, and, above all, to heat treatment following forming, forging or casting. Iron-nickel-base (sometimes designated nickel-iron-base) superalloys such as IN-718 are less expensive than nickel-base or cobalt-base...
Abstract
This chapter provides a brief introduction to superalloys and their high-temperature capabilities. It explains how and why they were developed and highlights some of their unique properties, behaviors, and characteristics. It discusses their basic metallurgy, how they are processed, and where they are typically used. It also includes nominal composition data for more than 120 superalloys and a concise overview of the major topics in the book.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.9781627082679
EISBN: 978-1-62708-267-9
Book Chapter
Introduction
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.sap.t53000001
EISBN: 978-1-62708-313-3
...-Cr-W systems developed for environmentally aggressive applications, such as cutlery, machine tools, and wear-resistant surfaces ( Ref 5 ). By the time the United States had developed its first aircraft GTE in 1943, cobalt-base superalloys had been introduced, and Haynes Stellite 21 (a cast alloy...
Abstract
Superalloys, although not strictly defined, are generally regarded as high-performance alloys based on group VIII elements (nickel, cobalt, or iron, with a high percentage of nickel) to which a multiplicity of alloying elements have been added. The defining feature of a superalloy is its combination of relatively high mechanical strength and surface stability at high operating temperatures. This chapter provides a brief history of the development of superalloys and discusses their use in the gas turbine engines.
Book Chapter
Failure and Refurbishment
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280323
EISBN: 978-1-62708-267-9
...-crystal alloys by the coating-stripping process. For straightening: Extreme care must be taken to avoid cracking. The process is most effective for wrought components. Although some claim otherwise, PC cast vane airfoils (cobalt-base superalloys) for aircraft gas turbines can...
Abstract
This chapter discusses the failure of superalloy components in high-temperature applications where they are subject to the effects of microstructural changes, melting, and corrosion. It explains how overheating can deplete alloying elements and alter the composition and distribution of phases, and how these processes contribute to microstructural changes as a function of time, temperature, and applied stress. It also describes several failure examples and discusses related issues, including damage recovery, refurbishment, and repair.
Book Chapter
Superalloys—Retrospect and Future Prospects
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280339
EISBN: 978-1-62708-267-9
... as wrought materials, new cobalt-base superalloys were invented and brought to market, while both wrought and cast nickel-base superalloys became the predominant alloys of choice for the most strength-critical applications. The development of vacuum melting technology for superalloys provided for a quantum...
Abstract
This chapter discusses the progress that has been made in the development of superalloy operating temperatures, properties, and performance. It also provides forward-looking projections based on advances in process modeling, alloying, and production techniques.
1