Skip Nav Destination
Close Modal
Search Results for
cladding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 254 Search Results for
cladding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Structural Steels and Steels for Pressure Vessels, Piping, and Boilers
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Fig. 14.43 (a) Austenitic stainless steel cladding weld deposited over a substrate of 20MnMoNi55 steel. Heat-affected zone is visible, as is the columnar structure in the weld-deposited material, in multiple layers. The arrow indicates a slag inclusion defect, detected during ultrasonic
More
Image
in Black Liquor Recovery Boilers in the Pulp and Paper Industry
> High-Temperature Corrosion and Materials Applications
Published: 01 November 2007
Fig. 13.6 Cracks initiated on the outer surface of the 304L cladding, propagated inward to the substrate steel of the membrane and terminated at the cladding-steel interface. Courtesy of Oak Ridge National Laboratory.
More
Image
in Waste-to-Energy Boilers and Waste Incinerators
> High-Temperature Corrosion and Materials Applications
Published: 01 November 2007
Fig. 12.6 Wastage rates as a function of steam temperature for alloy 625 cladding in weld overlay tubes and coextruded tubes tested as part of superheater tube bundles at various WTE boilers. Source: Ref 10 , 22
More
Image
in Petroleum Reactor Pressure-Vessel Materials for Hydrogen Service
> Damage Mechanisms and Life Assessment of High-Temperature Components
Published: 01 December 1989
Fig. 7.36. Typical appearance of hydrogen-induced debonding of cladding (photo courtesy of M. Prager, Metal Properties Council, New York).
More
Image
Published: 01 December 2006
Fig. 5.72 (a) Encapsulation of powder. Cladding sealed at the back and with evacuation tube. (b) Evacuation [ Rob 91 ]
More
Image
Published: 30 June 2023
Fig. 10.24 Sheet supplied for brazing applications with a 4 xxx alloy cladding
More
Image
Published: 01 December 2006
Fig. 3.78 Fiber cladding with the conform extrusion press [ Lan 85 ]
More
Image
Published: 01 August 1999
Fig. 6 Corrosion problems associated with improper use of insulation and cladding. (a) Incorrect overlap in lobster-back cladding does not allow fluid runoff. (b) Poor installation left a gap in the insulation that allows easy access to the elements. (c) Outer metal cladding was cut too short
More
Image
Published: 01 January 2000
Fig. 12 Corrosion problems associated with improper use of insulation and cladding. (a) Incorrect overlap in lobster-back cladding does not allow fluid runoff. (b) Poor installation left a gap in the insulation that allows easy access to the elements. (c) Outer metal cladding was cut too short
More
Image
Published: 01 November 2011
Fig. 6.23 Bond zone pattern typical of explosion clad metals. Materials are type 304L stainless steel and medium-carbon steel. 20×. Source: Ref 6.1
More
Image
in Black Liquor Recovery Boilers in the Pulp and Paper Industry
> High-Temperature Corrosion and Materials Applications
Published: 01 November 2007
Fig. 13.5 Cracks initiated on the outer diameter of the 304L clad tube, propagated inward to the substrate steel and terminated at the cladding-steel interface. Courtesy of Oak Ridge National Laboratory.
More
Image
in Surface Engineering to Add a Surface Layer or Coating
> Surface Engineering for Corrosion and Wear Resistance
Published: 01 March 2001
Fig. 11 High-volume commercially available clad metals
More
Image
Published: 01 July 1997
Fig. 5 Joint designs for clad steel. (a) Material of 4.8 to 16 mm ( 3 16 to 5 8 in.) thickness. (b) Material of 16 to 25 mm ( 5 8 to 1 in.) thickness. Source: Ref 9
More
Image
Published: 01 June 2008
Fig. 25.15 Copper-nickel clad coinage alloy. Original magnification: 50×. Source: Ref 9
More
Image
Published: 01 May 2018
FIG. 7.6 The Chrysler Building’s upper seven stories are clad with the German alloy, 20% chromium and 7% nickel.
More
Image
Published: 01 May 2018
FIG. 8.15 Built in 1953, the first aluminum-clad high-rise building served as Alcoa’s corporate headquarters in Pittsburgh.
More
Image
Published: 01 November 2012
Fig. 33 Axial stress fatigue strength of 0.8 mm (0.030 in.) 2024, 7075, and clad sheet in air and seawater, R = 0. Source: Ref 19
More
Image
in Corrosion in Petroleum Refining and Petrochemical Operations[1]
> Corrosion in the Petrochemical Industry
Published: 01 December 2015
Fig. 43 Hydrogen-induced disbonding of stainless steel clad plate steel produced in a laboratory test in accordance with ASTM G 146 in high-pressure hydrogen. The crack is in the stainless steel cladding shown at the top of the micrograph. 200×
More
Image
Published: 30 June 2023
Fig. 16.11 Example of an aluminum composite clad building in Belgium. Courtesy of 3A Composites
More
Image
Published: 30 June 2023
Fig. 17.3 All-clad aluminum (a) cookware schematic and (b) saucepan
More
1